Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 171: 287-307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061210

ABSTRACT

The spectral formant structure and periodicity pitch are the major features that determine the identity of vowels and the characteristics of the speaker. However, very little is known about how the processing of these features in the auditory cortex changes during development. To address this question, we independently manipulated the periodicity and formant structure of vowels while measuring auditory cortex responses using magnetoencephalography (MEG) in children aged 7-12 years and adults. We analyzed the sustained negative shift of source current associated with these vowel properties, which was present in the auditory cortex in both age groups despite differences in the transient components of the auditory response. In adults, the sustained activation associated with formant structure was lateralized to the left hemisphere early in the auditory processing stream requiring neither attention nor semantic mapping. This lateralization was not yet established in children, in whom the right hemisphere contribution to formant processing was strong and decreased during or after puberty. In contrast to the formant structure, periodicity was associated with a greater response in the right hemisphere in both children and adults. These findings suggest that left-lateralization for the automatic processing of vowel formant structure emerges relatively late in ontogenesis and pose a serious challenge to current theories of hemispheric specialization for speech processing.


Subject(s)
Auditory Cortex , Speech Perception , Adult , Humans , Child , Auditory Cortex/physiology , Acoustic Stimulation , Auditory Perception/physiology , Magnetoencephalography , Speech/physiology , Speech Perception/physiology
2.
PLoS One ; 18(2): e0281531, 2023.
Article in English | MEDLINE | ID: mdl-36780507

ABSTRACT

Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Motion Perception , Male , Humans , Primary Visual Cortex , Magnetoencephalography , Photic Stimulation/methods , Motion Perception/physiology
3.
Behav Neurol ; 2020: 5758038, 2020.
Article in English | MEDLINE | ID: mdl-32256856

ABSTRACT

The evolution of virtual reality (VR) technologies requires setting boundaries of its use. In this study, 3 female participants were experiencing VR scenarios with stressful content and their activity of the autonomic nervous system and EEG were recorded. It has been discovered that virtual reality can evoke acute stress reactions accompanied by activation of the sympathetic nervous system and a decrease in the activity of the parasympathetic nervous system. The high-stress response is accompanied by a decrease in the power of the EEG, and, on the contrary, the activation of the avoidance reaction is accompanied by an increase in the power of the EEG alpha waves. Therefore, the use of stressful VR content can cause high emotional stress to a user and restrictions should be considered.


Subject(s)
Stress, Psychological/etiology , Virtual Reality , Adult , Autonomic Nervous System/physiology , Electroencephalography/methods , Female , Humans , Stress, Psychological/physiopathology
4.
Comput Math Methods Med ; 2019: 4217491, 2019.
Article in English | MEDLINE | ID: mdl-31827583

ABSTRACT

Eye-hand coordination during dart throwing includes both the sensory and motor components, as well as cognitive variables, for example, the direction of the subject's attention to the target or to the hand kinematic. In the present study, subjects performed dart throws in the eyes-open and eyes-closed conditions with simultaneous recording of the kinematics of the throwing hand. The results showed that the position of the hand in its raising phase was closer to the torso when performing more accurate throws with the eyes-open condition compared to more peripheral throws and throws performed in the eyes-closed condition. Following the dart release, the position of the hand in the eyes-open condition was lower compared to the eyes-closed condition. Additionally, in the eyes-closed condition, raising the hand in its backward moving phase negatively predicts the throwing accuracy. Thus, the early phase of the movement is associated with attention, and the final phase is associated with the visual feedback about the throwing accuracy. Raising the hand in the eyes-closed condition reflects an increase in muscle tension, which leads to a decrease in the accuracy of movement. The results of the study can be applied in sports and in the treatment of hand-eye-coordination disorders.


Subject(s)
Arm/physiology , Feedback, Sensory , Hand/physiology , Movement , Psychomotor Performance/physiology , Adolescent , Adult , Biomechanical Phenomena , Female , Humans , Male , Motor Skills , Reproducibility of Results , Sports , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...