Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
J Invest Dermatol ; 144(4): 811-819.e4, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37802293

ABSTRACT

Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate constitutive and G-protein coupled receptor ligand-induced intracellular calcium signaling in endothelial cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , GTP-Binding Protein alpha Subunits , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits/genetics , Mutation , Calcium , Endothelial Cells/metabolism , Mosaicism , Calcium Signaling/genetics , Ligands
2.
J Invest Dermatol ; 144(4): 820-832.e9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37802294

ABSTRACT

Mosaic mutations in genes GNAQ or GNA11 lead to a spectrum of diseases including Sturge-Weber syndrome and phakomatosis pigmentovascularis with dermal melanocytosis. The pathognomonic finding of localized "tramlining" on plain skull radiography, representing medium-sized neurovascular calcification and associated with postnatal neurological deterioration, led us to study calcium metabolism in a cohort of 42 children. In this study, we find that 74% of patients had at least one abnormal measurement of calcium metabolism, the commonest being moderately low serum ionized calcium (41%) or high parathyroid hormone (17%). Lower levels of ionized calcium even within the normal range were significantly associated with seizures, and with specific antiepileptics despite normal vitamin D levels. Successive measurements documented substantial intrapersonal fluctuation in indices over time, and DEXA scans were normal in patients with hypocalcemia. Neurohistology from epilepsy surgery in five patients revealed not only intravascular, but perivascular and intraparenchymal mineral deposition and intraparenchymal microvascular disease in addition to previously reported findings. Neuroradiology review clearly demonstrated progressive calcium deposition in individuals over time. These findings and those of the adjoining paper suggest that calcium deposition in the brain of patients with GNAQ/GNA11 mosaicism may not be a nonspecific sign of damage as was previously thought, but may instead reflect the central postnatal pathological process in this disease spectrum.


Subject(s)
Calcinosis , Neurocutaneous Syndromes , Child , Humans , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Calcium/metabolism , Mosaicism , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/genetics , Calcinosis/genetics
3.
J Am Soc Nephrol ; 34(12): 1991-2011, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37787550

ABSTRACT

SIGNIFICANCE STATEMENT: Kidney stone disease is a common disorder with poorly understood pathophysiology. Observational and genetic studies indicate that adiposity is associated with an increased risk of kidney stone disease. However, the relative contribution of general and central adipose depots and the mechanisms by which effects of adiposity on kidney stone disease are mediated have not been defined. Using conventional and genetic epidemiological techniques, we demonstrate that general and central adiposity are independently associated with kidney stone disease. In addition, one mechanism by which central adiposity increases risk of kidney stone disease is by increasing serum calcium concentration. Therapies targeting adipose depots may affect calcium homeostasis and help to prevent kidney stone disease. BACKGROUND: Kidney stone disease affects approximately 10% of individuals in their lifetime and is frequently recurrent. The disease is linked to obesity, but the mechanisms mediating this association are uncertain. METHODS: Associations of adiposity and incident kidney stone disease were assessed in the UK Biobank over a mean of 11.6 years/person. Genome-wide association studies and Mendelian randomization (MR) analyses were undertaken in the UK Biobank, FinnGen, and in meta-analyzed cohorts to identify factors that affect kidney stone disease risk. RESULTS: Observational analyses on UK Biobank data demonstrated that increasing central and general adiposity is independently associated with incident kidney stone formation. Multivariable MR, using meta-analyzed UK Biobank and FinnGen data, established that risk of kidney stone disease increases by approximately 21% per one standard deviation increase in body mass index (BMI, a marker of general adiposity) independent of waist-to-hip ratio (WHR, a marker of central adiposity) and approximately 24% per one standard deviation increase of WHR independent of BMI. Genetic analyses indicate that higher WHR, but not higher BMI, increases risk of kidney stone disease by elevating adjusted serum calcium concentrations (ß=0.12 mmol/L); WHR mediates 12%-15% of its effect on kidney stone risk in this way. CONCLUSIONS: Our study indicates that visceral adipose depots elevate serum calcium concentrations, resulting in increased risk of kidney stone disease. These findings highlight the importance of weight loss in individuals with recurrent kidney stones and suggest that therapies targeting adipose depots may affect calcium homeostasis and contribute to prevention of kidney stone disease.


Subject(s)
Adiposity , Kidney Calculi , Humans , Adiposity/genetics , Calcium , Risk Factors , Genome-Wide Association Study , Obesity/complications , Obesity, Abdominal/complications , Obesity, Abdominal/genetics , Waist-Hip Ratio , Body Mass Index , Kidney Calculi/epidemiology , Kidney Calculi/etiology , Mendelian Randomization Analysis
5.
Curr Issues Mol Biol ; 45(7): 5879-5901, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37504288

ABSTRACT

Multidisciplinary research efforts on potential COVID-19 vaccine and therapeutic candidates have increased since the pandemic outbreak of SARS-CoV-2 in 2019. This search has become imperative due to the increasing emergences and limited widely available medicines. The presence of bioactive anti-SARS-CoV-2 molecules was examined from various plant sources. Among them is a group of proteins called lectins that can bind carbohydrate moieties. In this article, we present ten novel, chitin-specific Hevein-like lectins that were derived from Selaginella moellendorffii v1.0's genome. The capacity of these lectin homologs to bind with the spike protein of SARS-CoV-2 was examined. Using the HDOCK server, 3D-modeled Hevein-domains were docked to the spike protein's receptor binding domain (RBD). The Smo446851, Smo125663, and Smo99732 interacted with Asn343-located complex N-glycan and RBD residues, respectively, with binding free energies of -17.5, -13.0, and -26.5 Kcal/mol. The molecular dynamics simulation using Desmond and the normal-state analyses via torsional coordinate association for the Smo99732-RBD complex using iMODS is characterized by overall higher stability and minimum deformity than the other lectin complexes. The three lectins interacting with carbohydrates were docked against five individual mutations that frequently occur in major SARS-CoV-2 variants. These were in the spike protein's receptor-binding motif (RBM), while Smo125663 and Smo99732 only interacted with the spike glycoprotein in a protein-protein manner. The precursors for the Hevein-like homologs underwent additional characterization, and their expressional profile in different tissues was studied. These in silico findings offered potential lectin candidates targeting key N-glycan sites crucial to the virus's virulence and infection.

6.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37283649

ABSTRACT

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
J Pediatr ; 257: 113367, 2023 06.
Article in English | MEDLINE | ID: mdl-36868303

ABSTRACT

OBJECTIVES: To evaluate the prevalence and degree of any neurodevelopmental abnormalities in children with familial hypocalciuric hypercalcemia type 3 (FHH3). STUDY DESIGN: A formal neurodevelopmental assessment was performed in children diagnosed with FHH3. The Vineland Adaptive Behavior Scales, which is a standardized parent report assessment tool for adaptive behavior, was used to assess communication, social skills, and motor function and to generate a composite score. RESULTS: Six patients were diagnosed with hypercalcemia between 0.1 and 8 years of age. All had neurodevelopmental abnormalities in childhood consisting of either global developmental delay, motor delay, expressive speech disturbances, learning difficulties, hyperactivity, or autism spectrum disorder. Four out of the 6 probands had a composite Vineland Adaptive Behavior Scales SDS of < -2.0, indicating adaptive malfunctioning. Significant deficits were observed in the domains of communication (mean SDS: -2.0, P < .01), social skills (mean SDS: -1.3, P < .05), and motor skills (mean SDS: 2.6, P < .05). Individuals were equally affected across domains, with no clear genotype-phenotype correlation. All family members affected with FHH3 also described evidence of neurodevelopmental dysfunction, including mild-to-moderate learning difficulties, dyslexia, and hyperactivity. CONCLUSION: Neurodevelopmental abnormalities appear to be a highly penetrant and common feature of FHH3, and early detection is warranted to provide appropriate educational support. This case series also supports consideration of serum calcium measurement as part of the diagnostic work-up in any child presenting with unexplained neurodevelopmental abnormalities.


Subject(s)
Autism Spectrum Disorder , Hypercalcemia , Kidney Diseases , Humans , Hypercalcemia/diagnosis , Hypercalcemia/genetics , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnosis , Communication , Genetic Association Studies
8.
J Bone Miner Res ; 38(6): 907-917, 2023 06.
Article in English | MEDLINE | ID: mdl-36970776

ABSTRACT

Familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2) are due to loss- and gain-of-function mutations, respectively, of the GNA11 gene that encodes the G protein subunit Gα11, a signaling partner of the calcium-sensing receptor (CaSR). To date, four probands with FHH2-associated Gα11 mutations and eight probands with ADH2-associated Gα11 mutations have been reported. In a 10-year period, we identified 37 different germline GNA11 variants in >1200 probands referred for investigation of genetic causes for hypercalcemia or hypocalcemia, comprising 14 synonymous, 12 noncoding, and 11 nonsynonymous variants. The synonymous and noncoding variants were predicted to be benign or likely benign by in silico analysis, with 5 and 3, respectively, occurring in both hypercalcemic and hypocalcemic individuals. Nine of the nonsynonymous variants (Thr54Met, Arg60His, Arg60Leu, Gly66Ser, Arg149His, Arg181Gln, Phe220Ser, Val340Met, Phe341Leu) identified in 13 probands have been reported to be FHH2- or ADH2-causing. Of the remaining nonsynonymous variants, Ala65Thr was predicted to be benign, and Met87Val, identified in a hypercalcemic individual, was predicted to be of uncertain significance. Three-dimensional homology modeling of the Val87 variant suggested it was likely benign, and expression of Val87 variant and wild-type Met87 Gα11 in CaSR-expressing HEK293 cells revealed no differences in intracellular calcium responses to alterations in extracellular calcium concentrations, consistent with Val87 being a benign polymorphism. Two noncoding region variants, a 40bp-5'UTR deletion and a 15bp-intronic deletion, identified only in hypercalcemic individuals, were associated with decreased luciferase expression in vitro but no alterations in GNA11 mRNA or Gα11 protein levels in cells from the patient and no abnormality in splicing of the GNA11 mRNA, respectively, confirming them to be benign polymorphisms. Thus, this study identified likely disease-causing GNA11 variants in <1% of probands with hypercalcemia or hypocalcemia and highlights the occurrence of GNA11 rare variants that are benign polymorphisms. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hypocalcemia , Humans , Hypocalcemia/genetics , Hypocalcemia/metabolism , Hypercalcemia/genetics , Calcium/metabolism , HEK293 Cells , Mutation/genetics , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism
9.
Nat Rev Endocrinol ; 19(1): 46-61, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36192506

ABSTRACT

Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.


Subject(s)
Lactation , Mammary Glands, Human , Female , Humans , Pregnancy , Mammary Glands, Human/metabolism , Oxytocin/metabolism , Placenta , Prolactin/metabolism , Lactation/metabolism
10.
J Bone Miner Res ; 37(11): 2315-2329, 2022 11.
Article in English | MEDLINE | ID: mdl-36245271

ABSTRACT

In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Infant, Newborn , Female , Humans , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/epidemiology , Hyperparathyroidism, Primary/genetics , Calcium , Hypercalcemia/genetics , Receptors, Calcium-Sensing/genetics , Parathyroid Hormone
11.
Front Immunol ; 13: 957913, 2022.
Article in English | MEDLINE | ID: mdl-36081516

ABSTRACT

Objectives: COVID-19 is a transmissible illness triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its onset in late 2019 in Wuhan city of China, it continues to spread universally, leading to an ongoing pandemic that shattered all efforts to restrain it. On the other hand, in Africa, the COVID-19 infection may be influenced by malaria coinfection. Hence, in this review article, we aimed to give a comprehensive account of the similarities between COVID-19 and malaria in terms of symptoms, clinical, immunological, and molecular perspectives. Methodology: In this article, we reviewed over 50 research papers to highlight the multilayered similarities between COVID-19 and malaria infections that might influence the ontology of COVID-19. Results: Despite the poor health and fragile medical system of many sub-Saharan African countries, they persisted with a statistically significantly low number of COVID-19 cases. This was attributed to many factors such as the young population age, the warm weather, the lack of proper diagnosis, previous infection with malaria, the use of antimalarial drugs, etc. Additionally, population genetics appears to play a significant role in shaping the COVID-19 dynamics. This is evident as recent genomic screening analyses of the angiotensin-converting enzyme 2 (ACE2) and malaria-associated-variants identified 6 candidate genes that might play a role in malaria and COVID-19 incidence and severity. Moreover, the clinical and pathological resemblances between the two diseases have made considerable confusion in the diagnosis and thereafter curb the disease in Africa. Therefore, possible similarities between the diseases in regards to the clinical, pathological, immunological, and genetical ascription were discussed. Conclusion: Understanding the dynamics of COVID-19 infection in Sub-Saharan Africa and how it is shaped by another endemic disease like malaria can provide insights into how to tailor a successful diagnostic, intervention, and control plans that lower both disease morbidity and mortality.


Subject(s)
COVID-19 , Malaria , SARS-CoV-2 , Africa South of the Sahara/epidemiology , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , COVID-19/epidemiology , Coinfection , Humans , Malaria/diagnosis , Malaria/epidemiology , Pandemics
12.
Biomed Pharmacother ; 155: 113735, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152414

ABSTRACT

Pathogenic bacteria, viruses, fungi, parasites, and other microbes constantly change to ensure survival. Several pathogens have adopted strict and intricate strategies to fight medical treatments. Many drugs, frequently prescribed to treat these pathogens, are becoming obsolete and ineffective. Because pathogens have gained the capacity to tolerate or resist medications targeted at them, hence the term antimicrobial resistance (AMR), in that regard, many natural compounds have been routinely used as new antimicrobial agents to treat infections. Thus, plant lectins, the carbohydrate-binding proteins, have been targeted as promising drug candidates. This article reviewed more than 150 published papers on plant lectins with promising antibacterial and antifungal properties. We have also demonstrated how some plant lectins could express a synergistic action as adjuvants to boost the efficacy of obsolete or abandoned antimicrobial drugs. Emphasis has also been given to their plausible mechanism of action. The study further reports on the immunomodulatory effect of plant lectins and how they boost the immune system to curb or prevent infection.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Antifungal Agents/pharmacology , Plant Lectins/pharmacology , Plant Lectins/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbohydrates
13.
BMJ Open ; 12(8): e062478, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36041762

ABSTRACT

INTRODUCTION: Lactation is a hormonally controlled process that promotes infant growth and neurodevelopment and reduces the long-term maternal risk of diabetes, cardiovascular disease and breast cancer. Hormones, such as prolactin and progesterone, mediate mammary development during pregnancy and are critical for initiating copious milk secretion within 24-72 hours post partum. However, the hormone concentrations mediating lactation onset are ill defined. METHODS AND ANALYSIS: The primary objective of the investigating hormones triggering the onset of sustained lactation study is to establish reference intervals for the circulating hormone concentrations initiating postpartum milk secretion. The study will also assess how maternal factors such as parity, pregnancy comorbidities and complications during labour and delivery, which are known to delay lactation, may affect hormone concentrations. This single-centre observational study will recruit up to 1068 pregnant women over a 3-year period. A baseline blood sample will be obtained at 36 weeks' gestation. Participants will be monitored during postpartum days 1-4. Lactation onset will be reported using a validated breast fullness scale. Blood samples will be collected before and after a breastfeed on up to two occasions per day during postpartum days 1-4. Colostrum, milk and spot urine samples will be obtained on a single occasion. Serum hormone reference intervals will be calculated as mean±1.96 SD, with 90% CIs determined for the upper and lower reference limits. Differences in hormone values between healthy breastfeeding women and those at risk of delayed onset of lactation will be assessed by repeated measures two-way analysis of variance or a mixed linear model. Correlations between serum hormone concentrations and milk composition and volume will provide insights into the endocrine regulation of milk synthesis. ETHICS AND DISSEMINATION: Approval for this study had been granted by the East of England-Cambridgeshire and Hertfordshire Research Ethics Committee (REC No. 20/EE/0172), by the Health Research Authority (HRA), and by the Oxford University Hospitals National Health Service Foundation Trust. The findings will be published in high-ranking journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER: ISRCTN12667795.


Subject(s)
Breast Feeding , State Medicine , Female , Hormones , Humans , Infant , Lactation/physiology , Observational Studies as Topic , Postpartum Period , Pregnancy
14.
Biochimie ; 202: 136-145, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35952948

ABSTRACT

Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.


Subject(s)
Antineoplastic Agents , Biological Products , Plant Lectins/pharmacology , Plant Lectins/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lectins/therapeutic use , Apoptosis
15.
BMC Plant Biol ; 22(1): 397, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35963996

ABSTRACT

BACKGROUND: Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS: We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION: Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.


Subject(s)
Quantitative Trait Loci , Sorghum , Carbohydrates , Edible Grain/genetics , Lectins/genetics , Plant Breeding , Quantitative Trait Loci/genetics , Sorghum/genetics , Stress, Physiological/genetics
16.
Eur J Endocrinol ; 187(1): 111-122, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35521792

ABSTRACT

Objective: The autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disorder characterised by immune dysregulation and autoimmune endocrine gland destruction. APS-1 is caused by biallelic mutations affecting the autoimmune regulator (AIRE) gene on chromosome 21q22.3, which facilitates immunological self-tolerance. The objective was to investigate >300 probands with suspected APS-1 or isolated hypoparathyroidism for AIRE abnormalities. Methods: Probands were assessed by DNA sequence analysis. Novel variants were characterised using 3D modelling of the AIRE protein. Restriction enzyme and microsatellite analysis were used to investigate for uniparental isodisomy. Results: Biallelic AIRE mutations were identified in 35 probands with APS-1 and 5 probands with isolated hypoparathyroidism. These included a novel homozygous p.(His14Pro) mutation, predicted to disrupt the N-terminal caspase activation recruitment domain of the AIRE protein. Furthermore, an apparently homozygous AIRE mutation, p.Leu323fs, was identified in an APS-1 proband, who is the child of non-consanguineous asymptomatic parents. Microsatellite analysis revealed that the proband inherited two copies of the paternal mutant AIRE allele due to uniparental isodisomy. Hypoparathyroidism was the most common endocrine manifestation in AIRE mutation-positive probands and >45% of those harbouring AIRE mutations had at least two diseases out of the triad of candidiasis, hypoparathyroidism, and hypoadrenalism. In contrast, type 1 diabetes and hypothyroidism occurred more frequently in AIRE mutation-negative probands with suspected APS-1. Around 30% of AIRE mutation-negative probands with isolated hypoparathyroidism harboured mutations in other hypoparathyroid genes. Conclusions: This study of a large cohort referred for AIRE mutational analysis expands the spectrum of genetic abnormalities causing APS-1.


Subject(s)
Hypoparathyroidism , Polyendocrinopathies, Autoimmune , Child , Germ Cells , Humans , Hypoparathyroidism/genetics , Mutation/genetics , Polyendocrinopathies, Autoimmune/genetics , Transcription Factors , Uniparental Disomy , AIRE Protein
17.
J Endocr Soc ; 6(5): bvac042, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35402765

ABSTRACT

Autosomal dominant hypocalcemia type 1 (ADH1) is a disorder of extracellular calcium homeostasis caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR). More than 35% of ADH1 patients have intracerebral calcifications predominantly affecting the basal ganglia. The clinical consequences of such calcifications remain to be fully characterized, although the majority of patients with these calcifications are considered to be asymptomatic. We report a 20-year-old female proband with a severe form of ADH1 associated with recurrent hypocalcemic and hypercalcemic episodes, persistent childhood hyperphosphatemia, and a low calcium/phosphate ratio. From the age of 18 years, she had experienced recurrent myoclonic jerks affecting the upper limbs that were not associated with epileptic seizures, extra-pyramidal features, cognitive impairment, or alterations in serum calcium concentrations. Computed tomography (CT) scans revealed calcifications of the globus pallidus regions of the basal ganglia bilaterally, and also the frontal lobes at the gray-white matter junction, and posterior horn choroid plexuses. The patient's myoclonus resolved following treatment with levetiracetam. CASR mutational analysis identified a reported germline gain-of-function heterozygous missense mutation, c.2363T>G; p.(Phe788Cys), which affects an evolutionarily conserved phenylalanine residue located in transmembrane domain helix 5 of the CaSR protein. Analysis of the cryo-electron microscopy CaSR structure predicted the wild-type Phe788 residue to form interactions with neighboring phenylalanine residues, which likely maintain the CaSR in an inactive state. The p.(Phe788Cys) mutation was predicted to disrupt these interactions, thereby leading to CaSR activation. These findings reveal myoclonus as a novel finding in an ADH1 patient with intracerebral calcifications.

18.
Lett Appl Microbiol ; 75(1): 61-69, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35285049

ABSTRACT

Earthworms have become a potential source of multi-beneficial bacteria and effective bioinoculants. Seed biopriming is an efficient inoculation method to apply bacteria prior to sowing, which enhances the chances of bacterial candidates to colonize the rhizosphere and/or establish a liaison with the plant. In this study, we evaluated plant growth-promoting traits of bacterial strains isolated from the earthworm's Aporrectodea molleri chloragogenous tissue. In addition, we investigated their prospective use as biopriming agents to enhance Zea mays germination and seedling growth. Results were subjected to principal component analysis for potential correlations between the studied parameters. The bacterial strains displayed different in vitro plant growth-promoting characteristics and were efficient when applied in vivo as they significantly increased maize germination rate (26-78%), root elongation (67-84%), seedlings fresh weight and dry weight. Aeromonas encheleia TC22 was the most significant strain to influence germination due to its high ability to produce indole-3-acetic acid, and along with Pseudomonas azotoformans TC1, they were the most proficient at enhancing seedling root elongation and biomass, which was significantly correlated with their in vitro plant growth-promoting traits. Our findings indicate that isolates TC22 and TC1 are potent bio-primers for maize seeds and should be tested further for their use as biopriming inoculants.


Subject(s)
Oligochaeta , Seedlings , Animals , Bacteria/genetics , Germination , Plant Roots , Prospective Studies , Seedlings/microbiology , Seeds/microbiology , Zea mays/microbiology
19.
Eur J Endocrinol ; 186(2): R33-R63, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34863037

ABSTRACT

This European expert consensus statement provides recommendations for the diagnosis and management of primary hyperparathyroidism (PHPT), chronic hypoparathyroidism in adults (HypoPT), and parathyroid disorders in relation to pregnancy and lactation. Specified areas of interest and unmet needs identified by experts at the second ESE Educational Program of Parathyroid Disorders (PARAT) in 2019, were discussed during two virtual workshops in 2021, and subsequently developed by working groups with interest in the specified areas. PHPT is a common endocrine disease. However, its differential diagnosing to familial hypocalciuric hypercalcemia (FHH), the definition and clinical course of normocalcemic PHPT, and the optimal management of its recurrence after surgery represent areas of uncertainty requiring clarifications. HypoPT is an orphan disease characterized by low calcium concentrations due to insufficient PTH secretion, most often secondary to neck surgery. Prevention and prediction of surgical injury to the parathyroid glands are essential to limit the disease-related burden. Long-term treatment modalities including the place for PTH replacement therapy and the optimal biochemical monitoring and imaging surveillance for complications to treatment in chronic HypoPT, need to be refined. The physiological changes in calcium metabolism occurring during pregnancy and lactation modify the clinical presentation and management of parathyroid disorders in these periods of life. Modern interdisciplinary approaches to PHPT and HypoPT in pregnant and lactating women and their newborns children are proposed. The recommendations on clinical management presented here will serve as background for further educational material aimed for a broader clinical audience, and were developed with focus on endocrinologists in training.


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Hypoparathyroidism , Parathyroid Diseases , Adult , Calcium , Female , Humans , Hypercalcemia/complications , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/diagnosis , Hyperparathyroidism, Primary/therapy , Hypoparathyroidism/diagnosis , Infant, Newborn , Lactation , Parathyroid Hormone , Pregnancy
20.
Clin Endocrinol (Oxf) ; 97(4): 483-501, 2022 10.
Article in English | MEDLINE | ID: mdl-34935164

ABSTRACT

Disorders of calcium homeostasis are the most frequent metabolic bone and mineral disease encountered by endocrinologists. These disorders usually manifest as primary hyperparathyroidism (PHPT) or hypoparathyroidism (HP), which have a monogenic aetiology in 5%-10% of cases, and may occur as an isolated endocrinopathy, or as part of a complex syndrome. The recognition and diagnosis of these disorders is important to facilitate the most appropriate management of the patient, with regard to both the calcium-related phenotype and any associated clinical features, and also to allow the identification of other family members who may be at risk of disease. Genetic testing forms an important tool in the investigation of PHPT and HP patients and is usually reserved for those deemed to be an increased risk of a monogenic disorder. However, identifying those suitable for testing requires a thorough clinical evaluation of the patient, as well as an understanding of the diversity of relevant phenotypes and their genetic basis. This review aims to provide an overview of the genetic basis of monogenic metabolic bone and mineral disorders, primarily focusing on those associated with abnormal calcium homeostasis, and aims to provide a practical guide to the implementation of genetic testing in the clinic.


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Calcium , Calcium, Dietary , Humans , Hypercalcemia/diagnosis , Hyperparathyroidism, Primary/diagnosis , Hyperparathyroidism, Primary/genetics , Phenotype , Receptors, Calcium-Sensing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...