Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Am Heart J ; 271: 55-67, 2024 May.
Article in English | MEDLINE | ID: mdl-38325523

ABSTRACT

BACKGROUND AND AIMS: Recent developments in high-throughput proteomic technologies enable the discovery of novel biomarkers of coronary atherosclerosis. The aims of this study were to test if plasma protein subsets could detect coronary artery calcifications (CAC) in asymptomatic individuals and if they add predictive value beyond traditional risk factors. METHODS: Using proximity extension assays, 1,342 plasma proteins were measured in 1,827 individuals from the Impaired Glucose Tolerance and Microbiota (IGTM) study and 883 individuals from the Swedish Cardiopulmonary BioImage Study (SCAPIS) aged 50-64 years without history of ischaemic heart disease and with CAC assessed by computed tomography. After data-driven feature selection, extreme gradient boosting machine learning models were trained on the IGTM cohort to predict the presence of CAC using combinations of proteins and traditional risk factors. The trained models were validated in SCAPIS. RESULTS: The best plasma protein subset (44 proteins) predicted CAC with an area under the curve (AUC) of 0.691 in the validation cohort. However, this was not better than prediction by traditional risk factors alone (AUC = 0.710, P = .17). Adding proteins to traditional risk factors did not improve the predictions (AUC = 0.705, P = .6). Most of these 44 proteins were highly correlated with traditional risk factors. CONCLUSIONS: A plasma protein subset that could predict the presence of subclinical CAC was identified but it did not outperform nor improve a model based on traditional risk factors. Thus, support for this targeted proteomics platform to predict subclinical CAC beyond traditional risk factors was not found.


Subject(s)
Biomarkers , Blood Proteins , Coronary Artery Disease , Primary Prevention , Proteomics , Vascular Calcification , Humans , Middle Aged , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Female , Proteomics/methods , Male , Vascular Calcification/blood , Vascular Calcification/diagnostic imaging , Biomarkers/blood , Blood Proteins/analysis , Primary Prevention/methods , Machine Learning , Risk Factors , Predictive Value of Tests , Tomography, X-Ray Computed/methods , Sweden/epidemiology
2.
Cancers (Basel) ; 15(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835457

ABSTRACT

Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.

3.
Nat Commun ; 14(1): 5417, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669926

ABSTRACT

Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines.


Subject(s)
Neoplasms , Humans , Cell Line , Drug Development , Gene Expression Profiling , Gene Expression
4.
Commun Med (Lond) ; 3(1): 107, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532738

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of neonatal mortality and morbidity. Early diagnosis and interventions are critical to improving the clinical outcomes of extremely premature infants. Blood protein profiling during the first months of life in preterm infants can shed light on the role of early extrauterine development and provide an increased understanding of maturation after extremely preterm birth and the underlying mechanisms of prematurity-related disorders. METHODS: We have investigated the blood protein profiles during the first months of life in preterm infants on the role of early extrauterine development. The blood protein levels were analyzed using next generation blood profiling on 1335 serum samples, collected longitudinally at nine time points from birth to full-term from 182 extremely preterm infants. RESULTS: The protein analysis reveals evident predestined serum evolution patterns common for all included infants. The majority of the variations in blood protein expression are associated with the postnatal age of the preterm infants rather than any other factors. There is a uniform protein pattern on postnatal day 1 and after 30 weeks postmenstrual age (PMA), independent of gestational age (GA). However, during the first month of life, GA had a significant impact on protein variability. CONCLUSIONS: The unified pattern of protein development for all included infants suggests an age-dependent stereotypic development of blood proteins after birth. This knowledge should be considered in neonatal settings and might alter the clinical approach within neonatology, where PMA is today the most dominant age variable.


Being born too early can affect a baby's health. We looked at how babies born extremely preterm, meaning more than 12 weeks earlier than a full-term baby, develop. We looked at the proteins present in their blood from the day they were born until their original due date. Our study of 182 extremely preterm babies born at different points in the pregnancy (gestational ages) found that the proteins present in their blood changed in a similar way over time. This means that the age of a baby after birth, and not how early they were born, mostly affects the proteins in their blood. These findings help us understand how extremely preterm babies develop after birth, which could lead to improvements to their healthcare during the first few weeks of their life.

5.
Nat Commun ; 14(1): 4308, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463882

ABSTRACT

A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.


Subject(s)
Hematologic Neoplasms , Neoplasms , Humans , Proteome/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Precision Medicine , Machine Learning
7.
Nat Commun ; 13(1): 3620, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750885

ABSTRACT

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Subject(s)
Endothelial Cells , Microglia , Animals , Microglia/metabolism , Phenotype , Regulon/genetics , Single-Cell Analysis , Swine , Transcriptome
8.
Cell Host Microbe ; 30(5): 726-739.e3, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35349787

ABSTRACT

Temporal dynamics of the gut microbiota potentially limit the identification of microbial features associated with health status. Here, we used whole-genome metagenomic and 16S rRNA gene sequencing to characterize the intra- and inter-individual variations of gut microbiota composition and functional potential of a disease-free Swedish population (n = 75) over one year. We found that 23% of the total compositional variance was explained by intra-individual variation. The degree of intra-individual compositional variability was negatively associated with the abundance of Faecalibacterium prausnitzii (a butyrate producer) and two Bifidobacterium species. By contrast, the abundance of facultative anaerobes and aerotolerant bacteria such as Escherichia coli and Lactobacillus acidophilus varied extensively, independent of compositional stability. The contribution of intra-individual variance to the total variance was greater for functional pathways than for microbial species. Thus, reliable quantification of microbial features requires repeated samples to address the issue of intra-individual variations of the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Bacteria/genetics , Bifidobacterium/genetics , Feces/microbiology , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Sweden
9.
BMC Biol ; 20(1): 25, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35073880

ABSTRACT

BACKGROUND: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. RESULTS: An open-access pig expression map ( www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. CONCLUSIONS: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource ( www.rnaatlas.org ), including a comparison to the expression of human orthologs.


Subject(s)
Genome , Genomics , Animals , Gene Expression Profiling , Mammals , Molecular Sequence Annotation , Organ Specificity , Swine/genetics , Transcriptome
10.
Pediatr Res ; 91(4): 937-946, 2022 03.
Article in English | MEDLINE | ID: mdl-33895781

ABSTRACT

BACKGROUND: Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS: Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS: We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS: The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT: Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.


Subject(s)
Premature Birth , Retinopathy of Prematurity , Blood Proteins , Child , Female , Gestational Age , Humans , Infant , Infant, Extremely Premature , Infant, Newborn , Pregnancy , Retinopathy of Prematurity/diagnosis
11.
EBioMedicine ; 74: 103723, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34844191

ABSTRACT

BACKGROUND: COVID-19 has caused millions of deaths globally, yet the cellular mechanisms underlying the various effects of the disease remain poorly understood. Recently, a new analytical platform for comprehensive analysis of plasma protein profiles using proximity extension assays combined with next generation sequencing has been developed, which allows for multiple proteins to be analyzed simultaneously without sacrifice on accuracy or sensitivity. METHODS: We analyzed the plasma protein profiles of COVID-19 patients (n = 50) with mild and moderate symptoms by comparing the protein levels in newly diagnosed patients with the protein levels in the same individuals after 14 days. FINDINGS: The study has identified more than 200 proteins that are significantly elevated during infection and many of these are related to cytokine response and other immune-related functions. In addition, several other proteins are shown to be elevated, including SCARB2, a host cell receptor protein involved in virus entry. A comparison with the plasma protein response in patients with severe symptoms shows a highly similar pattern, but with some interesting differences. INTERPRETATION: The study presented here demonstrates the usefulness of "next generation plasma protein profiling" to identify molecular signatures of importance for disease progression and to allow monitoring of disease during recovery from the infection. The results will facilitate further studies to understand the molecular mechanism of the immune-related response of the SARS-CoV-2 virus. FUNDING: This work was financially supported by Knut and Alice Wallenberg Foundation.


Subject(s)
Blood Proteins/classification , Blood Proteins/metabolism , COVID-19/blood , COVID-19/pathology , Plasma/chemistry , Disease Progression , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Proteome/metabolism , SARS-CoV-2/immunology , Severity of Illness Index
12.
Sci Adv ; 7(31)2021 07.
Article in English | MEDLINE | ID: mdl-34321199

ABSTRACT

Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters. An expression specificity classification was performed to determine the number of genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs and between organs.


Subject(s)
Proteome , Transcriptome , Antibodies/metabolism , Gene Expression Profiling , Humans , Proteome/metabolism , Proteomics
13.
Nat Commun ; 12(1): 2493, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941778

ABSTRACT

The need for precision medicine approaches to monitor health and disease makes it important to develop sensitive and accurate assays for proteome profiles in blood. Here, we describe an approach for plasma profiling based on proximity extension assay combined with next generation sequencing. First, we analyze the variability of plasma profiles between and within healthy individuals in a longitudinal wellness study, including the influence of genetic variations on plasma levels. Second, we follow patients newly diagnosed with type 2 diabetes before and during therapeutic intervention using plasma proteome profiling. The studies show that healthy individuals have a unique and stable proteome profile and indicate that a panel of proteins could potentially be used for early diagnosis of diabetes, including stratification of patients with regards to response to metformin treatment. Although validation in larger cohorts is needed, the analysis demonstrates the usefulness of comprehensive plasma profiling for precision medicine efforts.


Subject(s)
Blood Proteins/analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Plasma/chemistry , Proteome/analysis , Aged , Diabetes Mellitus, Type 2/genetics , Early Diagnosis , Female , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Humans , Hypoglycemic Agents/therapeutic use , Longitudinal Studies , Male , Metformin/therapeutic use , Middle Aged , Precision Medicine/methods , Proteomics/methods
14.
Nucleic Acids Res ; 49(W1): W271-W276, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33849075

ABSTRACT

It is essential to reveal the associations between various omics data for a comprehensive understanding of the altered biological process in human wellness and disease. To date, very few studies have focused on collecting and exhibiting multi-omics associations in a single database. Here, we present iNetModels, an interactive database and visualization platform of Multi-Omics Biological Networks (MOBNs). This platform describes the associations between the clinical chemistry, anthropometric parameters, plasma proteomics, plasma metabolomics, as well as metagenomics for oral and gut microbiome obtained from the same individuals. Moreover, iNetModels includes tissue- and cancer-specific Gene Co-expression Networks (GCNs) for exploring the connections between the specific genes. This platform allows the user to interactively explore a single feature's association with other omics data and customize its particular context (e.g. male/female specific). The users can also register their data for sharing and visualization of the MOBNs and GCNs. Moreover, iNetModels allows users who do not have a bioinformatics background to facilitate human wellness and disease research. iNetModels can be accessed freely at https://inetmodels.com without any limitation.


Subject(s)
Databases, Factual , Gastrointestinal Microbiome , Metabolomics , Metagenomics , Mouth/microbiology , Proteomics , Aged , Aged, 80 and over , Gene Regulatory Networks , Humans , Middle Aged , Neoplasms/genetics , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/microbiology , Software
15.
Cancer Res ; 81(9): 2545-2555, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33574091

ABSTRACT

Malignant cutaneous melanoma is one of the most common cancers in young adults. During the last decade, targeted and immunotherapies have significantly increased the overall survival of patients with malignant cutaneous melanoma. Nevertheless, disease progression is common, and a lack of predictive biomarkers of patient response to therapy hinders individualized treatment strategies. To address this issue, we performed a longitudinal study using an unbiased proteomics approach to identify and quantify proteins in plasma both before and during treatment from 109 patients treated with either targeted or immunotherapy. Linear modeling and machine learning approaches identified 43 potential prognostic and predictive biomarkers. A reverse correlation between apolipoproteins and proteins related to inflammation was observed. In the immunotherapy group, patients with low pretreatment expression of apolipoproteins and high expression of inflammation markers had shorter progression-free survival. Similarly, increased expression of LDHB during treatment elicited a significant impact on response to immunotherapy. Overall, we identified potential common and treatment-specific biomarkers in malignant cutaneous melanoma, paving the way for clinical use of these biomarkers following validation on a larger cohort. SIGNIFICANCE: This study identifies a potential biomarker panel that could improve the selection of therapy for patients with cutaneous melanoma.


Subject(s)
Apolipoproteins/blood , C-Reactive Protein/analysis , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/blood , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proteome/analysis , Serum Amyloid A Protein/analysis , Skin Neoplasms/blood , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Prognosis , Progression-Free Survival , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Young Adult , Melanoma, Cutaneous Malignant
16.
Pediatr Res ; 89(3): 604-612, 2021 02.
Article in English | MEDLINE | ID: mdl-32330929

ABSTRACT

BACKGROUND: Preterm birth and its complications are the primary cause of death among children under the age of 5. Among the survivors, morbidity both perinatally and later in life is common. The dawn of novel technical platforms for comprehensive and sensitive analysis of protein profiles in blood has opened up new possibilities to study both health and disease with significant clinical accuracy, here used to study the preterm infant and the physiological changes of the transition from intrauterine to extrauterine life. METHODS: We have performed in-depth analysis of the protein profiles of 14 extremely preterm infants using longitudinal sampling. Medical variables were integrated with extensive profiling of 448 unique protein targets. RESULTS: The preterm infants have a distinct unified protein profile in blood directly at birth regardless of clinical background; however, the pattern changed profoundly postnatally, expressing more diverse profiles only 1 week later and further on up to term-equivalent age. Clusters of proteins depending on temporal trend were identified. CONCLUSION: The protein profiles and the temporal trends here described will contribute to the understanding of the physiological changes in the intrauterine-extrauterine transition, which is essential to adjust early-in-life interventions to prone a normal development in the vulnerable preterm infants. IMPACT: We have performed longitudinal and in-depth analysis of the protein profiles of 14 extremely preterm infants using a novel multiplex protein analysis platform. The preterm infants had a distinct unified protein profile in blood directly at birth regardless of clinical background. The pattern changed dramatically postnatally, expressing more diverse profiles only 1 week later and further on up to term-equivalent age. Certain clusters of proteins were identified depending on their temporal trend, including several liver and immune proteins. The study contributes to the understanding of the physiological changes in the intrauterine-extrauterine transition.


Subject(s)
Blood Proteins/chemistry , Infant, Extremely Premature/blood , Cluster Analysis , Female , Gene Expression Profiling , Gestational Age , Humans , Infant, Extremely Premature/growth & development , Infant, Newborn , Longitudinal Studies , Male , Placenta/metabolism , Pregnancy , Premature Birth , Proteome , Sweden
17.
EBioMedicine ; 63: 103147, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33279861

ABSTRACT

BACKGROUND: Comprehensive proteomics profiling may offer new insights into the dysregulated metabolic milieu of type 2 diabetes, and in the future, serve as a useful tool for personalized medicine. This calls for a better understanding of circulating protein patterns at the early stage of type 2 diabetes as well as the dynamics of protein patterns during changes in metabolic status. METHODS: To elucidate the systemic alterations in early-stage diabetes and to investigate the effects on the proteome during metabolic improvement, we measured 974 circulating proteins in 52 newly diagnosed, treatment-naïve type 2 diabetes subjects at baseline and after 1 and 3 months of guideline-based diabetes treatment, while comparing their protein profiles to that of 94 subjects without diabetes. FINDINGS: Early stage type 2 diabetes was associated with distinct protein patterns, reflecting key metabolic syndrome features including insulin resistance, adiposity, hyperglycemia and liver steatosis. The protein profiles at baseline were attenuated during guideline-based diabetes treatment and several plasma proteins associated with metformin medication independently of metabolic variables, such as circulating EPCAM. INTERPRETATION: The results advance our knowledge about the biochemical manifestations of type 2 diabetes and suggest that comprehensive protein profiling may serve as a useful tool for metabolic phenotyping and for elucidating the biological effects of diabetes treatments. FUNDING: This work was supported by the Swedish Heart and Lung Foundation, the Swedish Research Council, the Erling Persson Foundation, the Knut and Alice Wallenberg Foundation, and the Swedish state under the agreement between the Swedish government and the county councils (ALF-agreement).


Subject(s)
Blood Proteins , Diabetes Mellitus, Type 2/blood , Proteome , Proteomics , Aged , Biomarkers , Computational Biology/methods , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/therapy , Female , Humans , Longitudinal Studies , Male , Middle Aged , Proteomics/methods , ROC Curve
18.
Nat Commun ; 11(1): 4487, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32900998

ABSTRACT

An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.


Subject(s)
Healthy Aging/metabolism , Metabolome , Proteome/metabolism , Aged , Cohort Studies , Female , Healthy Aging/genetics , Healthy Volunteers , Humans , Lipidomics , Longitudinal Studies , Male , Metabolomics , Middle Aged , Precision Medicine , Prospective Studies , Proteomics , Sweden , Transcriptome
19.
J Proteome Res ; 19(12): 4815-4825, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32820635

ABSTRACT

Spike-in of standards of known concentrations used in proteomics-based workflows is an attractive approach for both accurate and precise multiplexed protein quantification. Here, a quantitative method based on targeted proteomics analysis of plasma proteins using isotope-labeled recombinant standards originating from the Human Protein Atlas project has been established. The standards were individually quantified prior to being employed in the final multiplex assay. The assays are mainly directed toward actively secreted proteins produced in the liver, but may also originate from other parts of the human body. This study included 21 proteins classified by the FDA as either drug targets or approved clinical protein biomarkers. We describe the use of this multiplex assay for profiling a well-defined human cohort with sample collection spanning over a one-year period. Samples were collected at four different time points, which allowed for a longitudinal analysis to assess the variable plasma proteome within individuals. Two assays toward APOA1 and APOB had available clinical data, and the two assays were benchmarked against each other. The clinical assay is based on antibodies and shows high correlation between the two orthogonal methods, suggesting that targeted proteomics with highly parallel, multiplex analysis is an attractive alternative to antibody-based protein assays.


Subject(s)
Proteome , Proteomics , Blood Proteins , Humans , Isotope Labeling , Recombinant Proteins/genetics
20.
EBioMedicine ; 57: 102854, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32629387

ABSTRACT

BACKGROUND: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. METHODS: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. FINDINGS: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. INTERPRETATION: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches. FUNDING: This work was supported by the Erling Persson Foundation, the Swedish Heart and Lung Foundation, the Knut and Alice Wallenberg Foundation, Science for Life Laboratory, and the Swedish Research Council.


Subject(s)
Blood Proteins/genetics , Precision Medicine , Proteome/genetics , Proteomics , Adult , Antibodies , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Male , Middle Aged , Phenotype , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...