Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2015: 229-243, 2019.
Article in English | MEDLINE | ID: mdl-31222708

ABSTRACT

Conventional breeding of citrus types demands a long-term effort due to their complex reproductive biology and long juvenile period. As a compelling alternative, genetic engineering of mature tissues allows the insertion of specific traits into specific elite cultivars, including well-known and widely grown varieties and rootstocks, thus reducing the time and costs involved in improving and evaluating them. Conventional breeding for resistance to CTV in citrus varieties has been largely unsuccessful as well as cloning of the genes conferring resistance to specific citrus types. RNA interference (RNAi), based on producing dsRNAs (usually using intron-hairpin constructs) highly homologous to specific CTV sequences to trigger RNA silencing, has been employed to produce virus-resistant transgenic citrus plants. The most successful construct has been an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20, and p23 from the virus. Using it, we have generated full resistance against CTV in Mexican lime. Moreover, this strategy is applicable to all those citrus varieties amenable to mature transformation, including sweet oranges, sour oranges, mandarins, Citrus macrophylla, and limes.


Subject(s)
Plant Diseases/virology , Plants, Genetically Modified/genetics , Citrus/virology , Genetic Engineering , RNA Interference/physiology
2.
Mol Plant Pathol ; 16(4): 388-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25171669

ABSTRACT

Citrus tristeza virus (CTV) is phloem restricted in natural citrus hosts. The 23-kDa protein (p23) encoded by the virus is an RNA silencing suppressor and a pathogenicity determinant. The expression of p23, or its N-terminal 157-amino-acid fragment comprising the zinc finger and flanking basic motifs, driven by the constitutive 35S promoter of cauliflower mosaic virus, induces CTV-like symptoms and other aberrations in transgenic citrus. To better define the role of p23 in CTV pathogenesis, we compared the phenotypes of Mexican lime transformed with p23-derived transgenes from the severe T36 and mild T317 CTV isolates under the control of the phloem-specific promoter from Commelina yellow mottle virus (CoYMV) or the 35S promoter. Expression of the constructs restricted to the phloem induced a phenotype resembling CTV-specific symptoms (vein clearing and necrosis, and stem pitting), but not the non-specific aberrations (such as mature leaf epinasty and yellow pinpoints, growth cessation and apical necrosis) observed when p23 was ectopically expressed. Furthermore, vein necrosis and stem pitting in Mexican lime appeared to be specifically associated with p23 from T36. Phloem-specific accumulation of the p23Δ158-209(T36) fragment was sufficient to induce the same anomalies, indicating that the region comprising the N-terminal 157 amino acids of p23 is responsible (at least in part) for the vein clearing, stem pitting and, possibly, vein corking in this host.


Subject(s)
Citrus/virology , Closterovirus/genetics , Phloem/virology , Plants, Genetically Modified/virology , Closterovirus/pathogenicity , Promoter Regions, Genetic , RNA Interference
3.
J Virol ; 88(2): 1394-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24227850

ABSTRACT

An assay to identify interactions between Citrus Dwarfing Viroid (CDVd) and Citrus Tristeza Virus (CTV) showed that viroid titer was enhanced by the coinfecting CTV in Mexican lime but not in etrog citron. Since CTV encodes three RNA silencing suppressors (RSSs), p23, p20 and p25, an assay using transgenic Mexican limes expressing each RSS revealed that p23 and, to a lesser extent, p25 recapitulated the effect observed with coinfections of CTV and CDVd.


Subject(s)
Capsid Proteins/metabolism , Citrus/virology , Closterovirus/metabolism , Coinfection/virology , Plant Diseases/virology , RNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Viroids/physiology , Capsid Proteins/genetics , Citrus/genetics , Closterovirus/genetics , Coinfection/genetics , Plant Diseases/genetics , RNA Interference , RNA-Binding Proteins/genetics , Viral Proteins/genetics , Viroids/genetics
4.
Front Microbiol ; 4: 98, 2013.
Article in English | MEDLINE | ID: mdl-23653624

ABSTRACT

The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3'-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23.

5.
Mol Plant Microbe Interact ; 26(3): 306-18, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23387469

ABSTRACT

Citrus tristeza virus (CTV) encodes a singular protein (p23, 209 amino acids) with multiple functions, including RNA silencing suppression (RSS). Confocal laser-scanning microscopy of green fluorescent protein (GFP)-p23 agroexpressed in Nicotiana benthamiana revealed its accumulation in the nucleolus, Cajal bodies, and plasmodesmata. To dissect the nucleolar localization signal (NoLS) typically associated with basic motifs, seven truncated and 10 point-mutated versions of p23 were assayed. Deletion mutants showed that regions 50 to 86 and 100 to 157 (excluding fragment 106 to 114), both with basic motifs and the first with a zinc-finger, contain the (bipartite) NoLS. Alanine substitutions delimited this signal to three cysteines of the Zn-finger and some basic amino acids. RSS activity of p23 in N. benthamiana was abolished by essentially all mutants, indicating that it involves most p23 regions. The necrotic-inducing ability of p23 when launched in N. benthamiana from Potato virus X was only retained by deletion mutant 158-209 and one substitution mutant, showing that the Zn-finger and flanking basic motifs form part of the pathogenic determinant. Ectopic expression of p23 and some deletion mutants in transgenic Mexican lime demarcated a similar determinant, suggesting that p23 affects related pathways in citrus and N. benthamiana. Both RSS activity and pathogenicity of p23 appear related to its nucleolar localization.


Subject(s)
Cell Nucleolus/metabolism , Citrus/virology , Closterovirus/metabolism , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Amino Acid Motifs , Amino Acid Sequence , Citrus/cytology , Closterovirus/genetics , Closterovirus/pathogenicity , Coiled Bodies/metabolism , Gene Expression Regulation, Plant , Green Fluorescent Proteins/chemistry , Host-Pathogen Interactions , Microscopy, Confocal , Molecular Sequence Data , Plant Leaves/cytology , Plant Leaves/virology , Plants, Genetically Modified , Plasmodesmata/metabolism , Point Mutation , Potexvirus/genetics , RNA Interference , Recombinant Fusion Proteins/chemistry , Sequence Deletion , Nicotiana/cytology , Transgenes , Viral Proteins/genetics , Virulence
6.
Plant Biotechnol J ; 10(5): 597-608, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22405601

ABSTRACT

Citrus tristeza virus (CTV), the causal agent of the most devastating viral disease of citrus, has evolved three silencing suppressor proteins acting at intra- (p23 and p20) and/or intercellular level (p20 and p25) to overcome host antiviral defence. Previously, we showed that Mexican lime transformed with an intron-hairpin construct including part of the gene p23 and the adjacent 3' untranslated region displays partial resistance to CTV, with a fraction of the propagations from some transgenic lines remaining uninfected. Here, we transformed Mexican lime with an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20 and p23 from CTV strain T36 to silence the expression of these critical genes in CTV-infected cells. Three transgenic lines presented complete resistance to viral infection, with all their propagations remaining symptomless and virus-free after graft inoculation with CTV-T36, either in the nontransgenic rootstock or in the transgenic scion. Accumulation of transgene-derived siRNAs was necessary but not sufficient for CTV resistance. Inoculation with a divergent CTV strain led to partially breaking the resistance, thus showing the role of sequence identity in the underlying mechanism. Our results are a step forward to developing transgenic resistance to CTV and also show that targeting simultaneously by RNA interference (RNAi) the three viral silencing suppressors appears critical for this purpose, although the involvement of concurrent RNAi mechanisms cannot be excluded.


Subject(s)
Citrus/virology , Closterovirus/genetics , Disease Resistance , Genes, Suppressor , Plant Diseases/genetics , RNA Interference , Citrus/genetics , Closterovirus/pathogenicity , Genetic Vectors , Introns , Plant Diseases/virology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , RNA, Catalytic/genetics , RNA, Small Interfering , RNA-Binding Proteins/genetics , Viral Proteins/genetics
7.
Mol Plant Pathol ; 12(9): 898-910, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21726389

ABSTRACT

Citrus tristeza virus (CTV), a phloem-restricted closterovirus infecting citrus, encodes three different silencing suppressors (p25, p20 and p23), one of which (p23) is a pathogenicity determinant that induces aberrations resembling CTV symptoms when expressed ectopically in transgenic citrus hosts. In this article, the effect of p23 ectopic expression on virus infection was examined in sweet orange (SwO), a highly susceptible host, and sour orange (SO), which severely restricts CTV cell-to-cell movement. Transgenic plants of both species ectopically expressing p23, or transformed with an empty vector, were graft inoculated with the mild CTV isolate T385 or with CTV-BC1/GFP, a clonal strain derived from the severe isolate T36 carrying the gene for the green fluorescent protein (GFP). CTV distribution in infected tissues was assessed by direct tissue blot immunoassay and fluorescence emission, and virus accumulation was estimated by quantitative real-time reverse transcriptase-polymerase chain reaction. CTV accumulation in p23-expressing and control SwO plants was similar, whereas the viral load in transgenic SO expressing p23 was 10-10(5) times higher than in the cognate control plants. Although few infection foci composed of a single cell were observed in the phloem of CTV-infected control SO, the number of foci in p23-expressing plants was higher and usually comprised two to six cells, indicating viral cell-to-cell movement. CTV was detected in mesophyll protoplasts and cells from infected SO and SwO expressing p23, but not in similar protoplasts and cells from infected control plants. Our results show that the ectopic expression of p23 enables CTV to escape from the phloem and, in addition, facilitates systemic infection of the resistant SO host. This is the first report of a viral-encoded protein that enhances virus accumulation and distribution in woody hosts.


Subject(s)
Citrus/metabolism , Citrus/microbiology , Closterovirus/growth & development , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Viral Proteins/metabolism , Citrus/genetics , Closterovirus/genetics , Plant Diseases/genetics , Plant Diseases/virology , Plants, Genetically Modified/genetics , Viral Proteins/genetics
8.
Mol Plant Pathol ; 11(1): 33-41, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20078774

ABSTRACT

Mexican lime plants transformed with the 3'-terminal 549 nucleotides of the Citrus tristeza virus (CTV) genome in sense, antisense and intron-hairpin formats were analysed for transgene-derived transcript and short interfering RNA (siRNA) accumulation, and for CTV resistance. Propagations from all sense, antisense and empty-vector transgenic lines were susceptible to CTV, except for a single sense-line plant with a complex transgene integration pattern that showed transgene-derived siRNAs in association with low levels of the transgene-derived transcript. In contrast, nine of 30 intron-hairpin lines showed CTV resistance, with 9%-56% of bud-propagated plants, depending on the line, remaining uninfected on graft inoculation, and the others being susceptible. Although resistance was always associated with the presence of transgene-derived siRNAs, their level in different sense and intron-hairpin transformants was variable irrespective of the response to CTV infection. In intron-hairpin lines with single transgene integration, CTV resistance was correlated with low accumulation of the transgene-derived transcript rather than with high accumulation of transgene-derived siRNAs.


Subject(s)
Citrus/virology , Plant Viruses/physiology , RNA Interference , RNA, Small Interfering , Transgenes , 3' Untranslated Regions , Base Sequence , DNA Primers , DNA, Complementary , Introns , Open Reading Frames , Plants, Genetically Modified , Transformation, Genetic
9.
Plant Cell Environ ; 31(11): 1620-33, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18684239

ABSTRACT

The effect of gibberellins (GA) on internode transcriptome was investigated in transgenic Carrizo citrange (Citrus sinensis x Poncirus trifoliata) plants overexpressing endogenous CcGA20ox1 (encoding a GA biosynthetic gene), and in non-transformed explants treated with GA(3), using a citrus cDNA microarray. Substantial modulation of gene expression was found in sense CcGA20ox plants. Extensive up-regulation of genes involved in photosynthesis and carbon utilization, and down-regulation of those involved in protein synthesis and ribosome biogenesis were shown for the first time in plants with higher GA content. Importantly, increase of net photosynthesis in attached leaves was also demonstrated. Expression of other genes belonging to functional groups not reported previously to be regulated by GA (mainly abiotic and biotic stresses, and cuticle biosynthesis), and genes involved in cell division and cell wall architecture were also differentially expressed. Culture of citrus explants for 24 h in GA(3) solution produced much lower changes in the transcriptome compared with CcGA20ox plants (1.6% versus 16%, respectively, of total genes in the microarray), suggesting that most of the changes observed in CcGA20ox plants were a consequence of a long-standing GA effect. Interestingly, genes related to abiotic and biotic stresses were similarly modulated in transgenics and GA(3)-treated explants.


Subject(s)
Citrus/metabolism , Gene Expression Regulation, Plant , Gibberellins/pharmacology , Photosynthesis/drug effects , Plant Growth Regulators/pharmacology , Citrus/drug effects , Citrus/genetics , Gene Expression Profiling , Genes, Plant , Mixed Function Oxygenases/metabolism , Oligonucleotide Array Sequence Analysis , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction
10.
J Exp Bot ; 58(6): 1407-20, 2007.
Article in English | MEDLINE | ID: mdl-17317673

ABSTRACT

Carrizo citrange (Citrus sinensisxPoncirus trifoliata) is a citrus hybrid widely used as a rootstock, whose genetic manipulation to improve different growth characteristics is of high agronomic interest. In this work, transgenic Carrizo citrange plants have been produced overexpressing sense and antisense CcGA20ox1 (a key enzyme of GA biosynthesis) under control of the 35S promoter to modify plant architecture. As expected, taller (sense) and shorter (antisense) phenotypes correlated with higher and lower levels, respectively, of active GA1 in growing shoots. In contrast, other phenotypic characteristics seemed to be specific to citrus, or different from those described for similar transgenics in other species. For instance, thorns, typical organs of citrus at juvenile stages, were much longer in sense and shorter in antisense plants, and xylem tissue was reduced in leaf and internode of sense plants. Antisense plants presented a bushy phenotype, suggesting a possible effect of GAs on auxin biosynthesis and/or transport. The main foliole of sense plants was longer, although total leaf area was reduced. Leaf thickness was smaller in sense and larger in antisense plants due to changes in the spongy parenchyma. Internode cell length was not altered in transgenic plants, indicating that, in citrus, GAs regulate cell division rather than cell elongation. Interestingly, the phenotypes described were not apparent when transgenic plants were grafted on non-transgenic rootstock. This suggests that roots contribute to the GA economy of aerial parts in citrus and opens the possibility of using the antisense plants as dwarfing rootstocks.


Subject(s)
Citrus/physiology , DNA, Antisense/genetics , Gene Expression Regulation, Plant , Gibberellins/genetics , Mixed Function Oxygenases/genetics , Citrus/drug effects , Citrus/genetics , Cloning, Molecular , DNA, Plant/genetics , Genetic Engineering , Genetic Vectors , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plants, Genetically Modified/physiology , RNA, Plant/genetics , Restriction Mapping
11.
Plant Mol Biol ; 60(2): 153-65, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16429257

ABSTRACT

Previously, we have shown that most Mexican limes (Citrus aurantifolia (Christ.) Swing.) expressing the p23 gene of Citrus tristeza virus (CTV) exhibit aberrations resembling viral leaf symptoms. Here we report that five independent transgenic lines having normal phenotype displayed characteristics typical of post-transcriptional gene silencing (PTGS): multiple copies of the transgene, low levels of the corresponding mRNA, methylation of the silenced transgene, and accumulation of p23-specific small interfering RNAs (siRNAs). When graft- or aphid-inoculated with CTV, some propagations of these silenced lines were immune: they neither expressed symptoms nor accumulated virions and viral RNA as estimated by DAS-ELISA and Northern blot hybridization, respectively. Other propagations were moderately resistant because they became infected later and showed attenuated symptoms compared to controls. The susceptible propagations, in addition to symptom expression and elevated virus titer, accumulated p23-specific siRNAs at levels significantly higher than immune or non-inoculated propagations, and showed transgene demethylation. This variable response among clonal transformants indicates that factors other than the genetic background of the transgenic plants play a key role in PTGS-mediated resistance.


Subject(s)
Closterovirus/genetics , Gene Silencing , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/genetics , Viral Proteins/genetics , Blotting, Northern , Blotting, Southern , DNA Methylation , Plants, Genetically Modified , RNA, Small Interfering/genetics , Transgenes
12.
Mol Plant Microbe Interact ; 18(5): 435-45, 2005 May.
Article in English | MEDLINE | ID: mdl-15915642

ABSTRACT

Ectopic expression of the p23 gene from a severe (T36) strain of Citrus tristeza virus (CTV) induces viral-like symptoms in Mexican lime. Here, we report that expressing the same gene from a mild strain induced similar symptoms that correlated with accumulation of p23 protein irrespective of the source strain. CTV inoculation of transgenic limes showing CTV-like leaf symptoms and high p23 accumulation did not modify symptoms initially, with the virus titer being as in inoculated nontransgenic controls; however, at later stages, symptoms became attenuated. Transformation with p23-T36 of CTV-susceptible sweet and sour orange and CTV-resistant trifoliate orange also led to CTV-like leaf symptoms that did not develop when plants were transformed with a truncated p23 version. In transgenic citrus species and relatives other than Mexican lime, p23 was barely detectable, although symptom intensity correlated with levels of p23 transcripts. The lower accumulation of p23 in sweet and sour orange compared with Mexican lime also was observed in nontransgenic plants inoculated with CTV, suggesting that minimal p23 levels cause deleterious effects in the first two species. Conversely, transgenic expression of p23 in CTV nonhost Nicotiana spp. led to accumulation of p23 without phenotypic aberrations, indicating that p23 interferes with plant development only in citrus species and relatives.


Subject(s)
Citrus/virology , Closterovirus/genetics , Plant Diseases/virology , Plant Leaves/virology , Amino Acid Sequence , Citrus/metabolism , Closterovirus/pathogenicity , Gene Expression/physiology , Molecular Sequence Data , Plants, Genetically Modified , Species Specificity , Nicotiana/virology , Viral Proteins
13.
J Gen Virol ; 81(Pt 8): 2103-2109, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10900050

ABSTRACT

We showed previously that 218 and 110 bp N gene segments of tomato spotted wilt virus (TSWV) that were fused to the non-target green fluorescent protein (GFP) gene were able to confer resistance to TSWV via post-transcriptional gene silencing (PTGS). N gene segments expressed alone did not confer resistance. Apparently, the GFP DNA induced PTGS that targetted N gene segments and the incoming homologous TSWV for degradation, resulting in a resistant phenotype. These observations suggested that multiple resistance could be obtained by replacing the GFP DNA with a viral DNA that induces PTGS. The full-length coat protein (CP) gene of turnip mosaic virus (TuMV) was linked to 218 or 110 bp N gene segments and transformed into Nicotiana benthamiana. A high proportion (4 of 18) of transgenic lines with the 218 bp N gene segment linked to the TuMV CP gene were resistant to both viruses, and resistance was transferred to R(2) plants. Nuclear run-on and Northern experiments confirmed that resistance was via PTGS. In contrast, only one of 14 transgenic lines with the TuMV CP linked to a 110 bp N gene segment yielded progeny with multiple resistance. Only a few R(1) plants were resistant and resistance was not observed in R(2) plants. These results clearly show the applicability of multiple virus resistance through the fusion of viral segments to DNAs that induce PTGS.


Subject(s)
Artificial Gene Fusion , Capsid/genetics , Nucleocapsid/genetics , Potyvirus/genetics , RNA Splicing , Tospovirus/genetics , Transgenes , Chimera , Green Fluorescent Proteins , Luminescent Proteins/genetics , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...