Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Med Phys ; 51(2): 1019-1033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37482927

ABSTRACT

BACKGROUND: Pediatric molecular imaging requires a balance between administering an activity that will yield sufficient diagnostic image quality while maintaining patient radiation exposure at acceptable levels. In current clinical practice, this balance is arrived at by the current North American Consensus Guidelines in which patient weight is used to recommend the administered activity (AA). PURPOSE: We have previously demonstrated that girth (waist circumference at the level of the kidneys) is better at equalizing image quality than patient weight for pediatric Tc-99m DMSA renal function imaging. However, the correlation between image quality (IQ), AA, and patient girth has not been rigorously and systematically developed. In this work, we generate a series of curves showing the tradeoff between AA and IQ as a function of patient girth, providing the data for standards bodies to develop the next generation of dosing guideline for pediatric DMSA SPECT. METHODS: An anthropomorphic phantom series that included variations in age (5, 10, and 15 years), gender (M, F), local body morphometry (5, 10, 50, 90, and 95th girth percentiles), and kidney size (±15% standard size), was used to generate realistic SPECT projections. A fixed and clinically challenging defect-to-organ volume percentage (0.49% of renal cortex value) was used to model a focal defect with zero uptake (i.e., full local loss of renal function). Task-based IQ assessment methods were used to rigorously measure IQ in terms of renal perfusion defect detectability. This assessment was performed at multiple count levels (corresponding to various AAs) for groups of patients that had similar girths and defect sizes. Receiver-operating characteristics (ROC) analysis was applied; the area under the ROC curve (AUC) was used as a figure-of-merit for task performance. Curves showing the tradeoff between AUC and AA were generated for these groups of phantoms. RESULTS: Overall, the girth-based dosing method suggested different amounts of AA compared to weight-based dosing for the phantoms that had a relatively large body weight but a small girth or phantoms with relatively small bodyweight but large girth. Reductions of AA to 62.9% compared to weight-based dosing guidelines can potentially be realized while maintaining a baseline (AUC = 0.80) IQ for certain 15-year-olds who have a relatively small girth and large defect size. Note that the task-based IQ results are heavily dependent on the simulated defect size for the defect detection task and the appropriate AUC value must be decided by the physicians for this diagnostic task. These results are based purely on simulation and are subject to future clinical validation. CONCLUSIONS: The study provides simulation-based IQ-AA data for a girth-based dosing method for pediatric renal SPECT, suggesting that patient waist circumference at the level of kidneys should be considered in selecting the AA needed to achieve an acceptable IQ. This data may be useful for standards bodies to develop girth-based dosing guidelines.


Subject(s)
Technetium Tc 99m Dimercaptosuccinic Acid , Tomography, Emission-Computed, Single-Photon , Child , Humans , Tomography, Emission-Computed, Single-Photon/methods , Kidney , Phantoms, Imaging , Computer Simulation
3.
J Nucl Med ; 64(2): 312-319, 2023 02.
Article in English | MEDLINE | ID: mdl-36215573

ABSTRACT

When pregnancy is discovered during or after a diagnostic examination, the physician or the patient may request an estimate of the radiation dose received by the fetus as per guidelines and standard operating procedures. This study provided the imaging community with dose estimates to the fetus from PET/CT with protocols that are adapted to University of Michigan low-dose protocols for patients known to be pregnant. Methods: There were 9 patients analyzed with data for the first, second, and third trimesters, the availability of which is quite rare. These images were used to calculate the size-specific dose estimate (SSDE) from the CT scan portion and the SUV and 18F-FDG uptake dose from the PET scan portion using the MIRD formulation. The fetal dose estimates were tested for correlation with each of the following independent measures: gestational age, fetal volume, average water-equivalent diameter of the patient along the length of the fetus, SSDE, SUV, and percentage of dose from 18F-FDG. Stepwise multiple linear regression analysis was performed to assess the partial correlation of each variable. To our knowledge, this was the first study to determine fetal doses from CT and PET images. Results: Fetal self-doses from 18F for the first, second, and third trimesters were 2.18 mGy (single data point), 0.74-1.82 mGy, and 0.017-0.0017 mGy, respectively. The combined SSDE and fetal self-dose ranged from 1.2 to 8.2 mGy. These types of images from pregnant patients are rare. Conclusion: Our data indicate that the fetal radiation exposure from 18F-FDG PET and CT performed, when medically necessary, on pregnant women with cancer is low. All efforts should be made to minimize fetal radiation exposure by modifying the protocol.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Female , Pregnancy , Positron-Emission Tomography/adverse effects , Positron-Emission Tomography/methods , Fetus/diagnostic imaging , Tomography, X-Ray Computed/methods , Radiation Dosage
4.
Eur J Nucl Med Mol Imaging ; 49(11): 3852-3869, 2022 09.
Article in English | MEDLINE | ID: mdl-35536420

ABSTRACT

Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.


Subject(s)
Fluorodeoxyglucose F18 , Glioma , Amino Acids , Child , Glioma/diagnostic imaging , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals
5.
Pediatr Nephrol ; 37(9): 2157-2166, 2022 09.
Article in English | MEDLINE | ID: mdl-35091836

ABSTRACT

BACKGROUND: Both the development of kidney function in healthy children and autoregulation ability of kidney function in patients with asymmetric kidneys are important in clinical diagnosis and treatment of kidney-related diseases, but there are however only limited studies. This study aimed to investigate development of kidney function in normal children with healthy symmetric kidneys and autoregulation of the healthy kidney compensating the functional loss of a diseased one in children with asymmetric kidneys. METHODS: Two hundred thirty-seven children (156 male, 81 female) from 0 to 20y (average 4.6y ± 5.1) undergoing 99mTc-MAG3 renography were included, comprising 134 with healthy symmetrically functioning kidneys and 103 with asymmetric kidneys. Clearance was calculated from kidney uptakes at 1-2 min. A developmental model between MAG3 clearance (CL) and patient age in normal group was identified (CL = 84.39Age0.395 ml/min, r = 0.957, p < 0.001). The clearance autoregulation rate in abnormal group with asymmetric kidneys was defined as the ratio of the measured MAG3 clearance and the normal value predicted from the renal developmental model of normal group. RESULTS: No significant difference of MAG3 clearance (p = 0.723) was found between independent abnormal group and normal group. The autoregulation rate of kidney clearance in abnormal group was 94.2% on average, and no significant differences were found between two age groups (p = 0.49), male and female (p = 0.39), and left kidney and right kidney (p = 0.92) but two different grades of asymmetric kidneys (p = 0.02). CONCLUSIONS: The healthy kidney of two asymmetric kidneys can automatically regulate total kidney function up to 94% of two symmetric kidneys in normal children.


Subject(s)
Kidney Diseases , Radioisotope Renography , Child , Female , Homeostasis , Humans , Kidney , Male , Radiopharmaceuticals , Retrospective Studies , Technetium Tc 99m Mertiatide
6.
Ann Nucl Med ; 36(1): 24-32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34559366

ABSTRACT

PURPOSE: Previously, a joint ictal/inter-ictal SPECT reconstruction was proposed to reconstruct a differential image representing the change of brain SPECT image from an inter-ictal to an ictal study. The so-called joint method yielded better performance for epileptic foci localization than the conventional subtraction method. In this study, we evaluated the performance of different reconstruction settings of the joint reconstruction of ictal/inter-ictal SPECT data, which creates a differential image showing the difference between ictal and inter-ictal images, in lesion detection and localization in epilepsy imaging. METHODS: Differential images reconstructed from phantom data using the joint and the subtraction methods were compared based on lesion detection performance (channelized Hotelling observer signal-to-noise ratio (SNRCHO) averaged across four lesion-to-background contrast levels) at the optimal iteration. The joint-initial method which was the joint method that was initialized by the subtraction method at optimal iteration was also used to reconstruct differential images. These three methods with respective optimal iteration and the subtraction method with four iterations were applied to epileptic patient datasets. A human observer lesion localization study was performed based on localization receiver operating characteristic (LROC) analysis. RESULTS: From the phantom study, at their respective optimal iteration, the joint method yielded an improvement in lesion detection performance over the subtraction method of 26%, which increased to 145% when using the joint-initial method. From the patient study, the joint-initial method yielded the highest area under the LROC curve as compared with those of the joint and the subtraction methods with optimal iteration and with 4 iterations (0.44 vs 0.41, 0.39 and 0.36, respectively). CONCLUSIONS: In lesion detection and localization, the joint method at optimal iteration outperformed the subtraction method at optimal iteration and at iteration typically used in clinical practice. Furthermore, initialization by the subtraction method improved the performance of the joint method.


Subject(s)
Tomography, Emission-Computed, Single-Photon
7.
Semin Nucl Med ; 52(2): 149-156, 2022 03.
Article in English | MEDLINE | ID: mdl-34916043

ABSTRACT

Nuclear medicine provides methods and techniques in that has benefited pediatric patients and their referring physicians for over 40 years. Nuclear medicine provides qualitative and quantitative information about overall and regional function of organs, systems, and lesions in the body. This involves applications in many organ systems including the skeleton, the brain, the kidneys and the heart as well as in the diagnosis and treatment of cancer. The practice of nuclear medicine requires the administration of radiopharmaceuticals which expose the patient to very low levels of ionizing radiation. Advanced approaches in the estimation of radiation dose from the internal distribution of radiopharmaceuticals in patients of various sizes and shapes have been developed in the past 20 years. Although there is considerable uncertainty in the estimation of the risk of adverse health effects from radiation at the very low exposure levels typically associated with nuclear medicine, some considers it prudent to be more cautious when applied to children as they are generally considered to be at higher risk than adults. Standard guidelines for administered activities for nuclear medicine procedures in children have been established including the North American consensus guidelines and the Paediatric Dosage Card developed by the European Association of Nuclear Medicine. As we move into the future, these guidelines would likely be reviewed in response to changes in clinical practice, a better understanding of radiation dosimetry as applied to children as well as new clinical applications, new advancements in the field with respect to both instrumentation and image reconstruction and processing.


Subject(s)
Nuclear Medicine , Radiopharmaceuticals , Adult , Child , Humans , Nuclear Medicine/methods , Radiation Dosage , Radiometry/methods , Radionuclide Imaging , Radiopharmaceuticals/adverse effects
8.
Med Phys ; 48(8): 4123-4126, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34250610

ABSTRACT

The American Board of Radiology offers certification in three specialties of medical physics: Therapeutic Medical Physics, Diagnostic Medical Physics, and Nuclear Medical Physics. Of these specialties, medical nuclear physics has the fewest active diplomates, only a few hundred. The diagnostic medical physics specialty certification incudes a variety of modalities (ultrasound, radiography, computed tomography, and magnetic resonance imaging) yet does not address nuclear medicine imaging or therapy. This separation dates to the beginning of the ABR certification process for medical physicists in 1947; originally there were three certificates available: X-ray and Radium Physics, Medical Nuclear Physics and, as combination of these two, Radiological Physics. Over the span of 75 years since the Medical Nuclear Physics certification was created, much has changed in the scope and proliferation of the nuclear medicine endeavor and the question arises as to the need for change in the preparation process for medical physicists in the field. I offer thanks to our contributors and note that they are writing in the classic style of a debate, the opinions that they argue may or may not reflect their personal views.


Subject(s)
Internship and Residency , Nuclear Medicine , Certification , Health Physics , Humans , Nuclear Physics , Radiography , United States
9.
EJNMMI Phys ; 8(1): 53, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34283316

ABSTRACT

99mTc-DMSA is one of the most commonly used pediatric nuclear medicine imaging agents. Nevertheless, there are no pharmacokinetic (PK) models for 99mTc-DMSA in children, and currently available pediatric dose estimates for 99mTc-DMSA use pediatric S values with PK data derived from adults. Furthermore, the adult PK data were collected in the mid-70's using quantification techniques and instrumentation available at the time. Using pediatric imaging data for DMSA, we have obtained kinetic parameters for DMSA that differ from those applicable to adults. METHODS: We obtained patient data from a retrospective re-evaluation of clinically collected pediatric SPECT images of 99mTc-DMSA in 54 pediatric patients from Boston's Children Hospital (BCH), ranging in age from 1 to 16 years old. These were supplemented by prospective data from twenty-three pediatric patients (age range: 4 months to 6 years old). RESULTS: In pediatric patients, the plateau phase in fractional kidney uptake occurs at a fractional uptake value closer to 0.3 than the value of 0.5 reported by the International Commission on Radiological Protection (ICRP) for adult patients. This leads to a 27% lower time-integrated activity coefficient in pediatric patients than in adults. Over the age range examined, no age dependency in uptake fraction at the clinical imaging time was observed. Female pediatric patients had a 17% higher fractional kidney uptake at the clinical imaging time than males (P < 0.001). CONCLUSIONS: Pediatric 99mTc-DMSA kinetics differ from those reported for adults and should be considered in pediatric patient dosimetry. Alternatively, the differences obtained in this study could reflect improved quantification methods and the need to re-examine DMSA kinetics in adults.

11.
Med Phys ; 48(8): 4249-4261, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34101855

ABSTRACT

PURPOSE: 99m Tc-MDP single-photon emission computed tomography (SPECT) is an established tool for diagnosing lumbar stress, a common cause of low back pain (LBP) in pediatric patients. However, detection of small stress lesions is complicated by the low quality of SPECT, leading to significant interreader variability. The study objectives were to develop an approach based on a deep convolutional neural network (CNN) for detecting lumbar lesions in 99m Tc-MDP scans and to compare its performance to that of physicians in a localization receiver operating characteristic (LROC) study. METHODS: Sixty-five lesion-absent (LA) 99m Tc-MDP studies performed in pediatric patients for evaluating LBP were retrospectively identified. Projections for an artificial focal lesion were acquired separately by imaging a 99m Tc capillary tube at multiple distances from the collimator. An approach was developed to automatically insert lesions into LA scans to obtain realistic lesion-present (LP) 99m Tc-MDP images while ensuring knowledge of the ground truth. A deep CNN was trained using 2.5D views extracted in LP and LA 99m Tc-MDP image sets. During testing, the CNN was applied in a sliding-window fashion to compute a 3D "heatmap" reporting the probability of a lesion being present at each lumbar location. The algorithm was evaluated using cross-validation on a 99m Tc-MDP test dataset which was also studied by five physicians in a LROC study. LP images in the test set were obtained by incorporating lesions at sites selected by a physician based on clinical likelihood of injury in this population. RESULTS: The deep learning (DL) system slightly outperformed human observers, achieving an area under the LROC curve (AUCLROC ) of 0.830 (95% confidence interval [CI]: [0.758, 0.924]) compared with 0.785 (95% CI: [0.738, 0.830]) for physicians. The AUCLROC for the DL system was higher than that of two readers (difference in AUCLROC [ΔAUCLROC ] = 0.049 and 0.053) who participated to the study and slightly lower than that of two other readers (ΔAUCLROC  = -0.006 and -0.012). Another reader outperformed DL by a more substantial margin (ΔAUCLROC  = -0.053). CONCLUSION: The DL system provides comparable or superior performance than physicians in localizing small 99m Tc-MDP positive lumbar lesions.


Subject(s)
Deep Learning , Physicians , Child , Humans , Retrospective Studies , Technetium Tc 99m Medronate , Tomography, Emission-Computed, Single-Photon
12.
Nucl Med Commun ; 42(9): 1045-1051, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34001827

ABSTRACT

PURPOSE: The purposes of this study are to (1) identify patterns of inpatient PET/computed tomography (CT) use in and outside of the USA and (2) characterize inpatient PET/CT use by location and indication. MATERIALS AND METHODS: The study was deemed exempt by the Institutional Review Board. A survey link through REDCap was emailed to the Society of Nuclear Medicine and Molecular Imaging (SNMMI) members and PET Centers of Excellence members and posted on the SNMMI website. Data were collected from May 2018 to August 2018. Analyses were conducted using SAS Software 9.4 with the NPAR1WAY procedure. Differences were evaluated using the Kruskal-Wallis test with statistical significance defined as P ≤ 0.05. RESULTS: A total of 124 people responded to the survey, 71.8% (89/124) in the USA, and 26.6% (33/124) outside the USA [1.6% (2/124) no response]. 81.5% (101/124) read inpatient PET/CTs. Median percent of inpatient PET/CTs was 8.0% (range 0-100). Use of inpatient PET/CT was different (P < 0.0001) in the USA (5%, range 0-80%) versus outside USA (17.7%, range 0-100%). Use of inpatient PET/CT was different by institution type: median percent of inpatient PET/CTs in community teaching hospitals was 4.5% (range 0-50) versus 1.1% (range 0-20) in community nonteaching, 10% (range 0-80) in academic medical centers, and 20.0% (range 6.3-40) in government-affiliated institutions (P = 0.0001). CONCLUSIONS: Most US and non-US respondents read inpatients PET/CTs. Non-US respondents read a higher percentage of inpatient PET/CTs than US respondents. Respondents in government-affiliated institutions read the highest percent of inpatient PET/CTs and community nonteaching institutions the least. Results of this survey may help physicians evaluate whether their practice of providing inpatient PET/CT fits with current practice patterns.


Subject(s)
Positron Emission Tomography Computed Tomography , Humans , Tomography, X-Ray Computed
13.
J Appl Clin Med Phys ; 22(1): 4-10, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33533204

ABSTRACT

March 2021 will mark the eightieth anniversary of targeted radionuclide therapy, recognizing the first use of radioactive iodine to treat thyroid disease by Dr. Saul Hertz on March 31, 1941. The breakthrough of Dr. Hertz and collaborator physicist Arthur Roberts was made possible by rapid developments in the fields of physics and medicine in the early twentieth century. Although diseases of the thyroid gland had been described for centuries, the role of iodine in thyroid physiology had been elucidated only in the prior few decades. After the discovery of radioactivity by Henri Becquerel in 1897, rapid advancements in the field, including artificial production of radioactive isotopes, were made in the subsequent decades. Finally, the diagnostic and therapeutic use of radioactive iodine was based on the tracer principal that was developed by George de Hevesy. In the context of these advancements, Hertz was able to conceive the potential of using of radioactive iodine to treat thyroid diseases. Working with Dr. Roberts, he obtained the experimental data and implemented it in the clinical setting. Radioiodine therapy continues to be a mainstay of therapy for hyperthyroidism and thyroid cancer. However, Hertz struggled to gain recognition for his accomplishments and to continue his work and, with his early death in 1950, his contributions have often been overlooked until recently. The work of Hertz and others provided a foundation for the introduction of other radionuclide therapies and for the development of the concept of theranostics.


Subject(s)
Iodine , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Precision Medicine , Thyroid Neoplasms/radiotherapy
14.
J Med Imaging (Bellingham) ; 8(4): 041204, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33521164

ABSTRACT

Purpose: We propose a deep learning-based anthropomorphic model observer (DeepAMO) for image quality evaluation of multi-orientation, multi-slice image sets with respect to a clinically realistic 3D defect detection task. Approach: The DeepAMO is developed based on a hypothetical model of the decision process of a human reader performing a detection task using a 3D volume. The DeepAMO is comprised of three sequential stages: defect segmentation, defect confirmation (DC), and rating value inference. The input to the DeepAMO is a composite image, typical of that used to view 3D volumes in clinical practice. The output is a rating value designed to reproduce a human observer's defect detection performance. In stages 2 and 3, we propose: (1) a projection-based DC block that confirms defect presence in two 2D orthogonal orientations and (2) a calibration method that "learns" the mapping from the features of stage 2 to the distribution of observer ratings from the human observer rating data (thus modeling inter- or intraobserver variability) using a mixture density network. We implemented and evaluated the DeepAMO in the context of Tc 99 m -DMSA SPECT imaging. A human observer study was conducted, with two medical imaging physics graduate students serving as observers. A 5 × 2 -fold cross-validation experiment was conducted to test the statistical equivalence in defect detection performance between the DeepAMO and the human observer. We also compared the performance of the DeepAMO to an unoptimized implementation of a scanning linear discriminant observer (SLDO). Results: The results show that the DeepAMO's and human observer's performances on unseen images were statistically equivalent with a margin of difference ( Δ AUC ) of 0.0426 at p < 0.05 , using 288 training images. A limited implementation of an SLDO had a substantially higher AUC (0.99) compared to the DeepAMO and human observer. Conclusion: The results show that the DeepAMO has the potential to reproduce the absolute performance, and not just the relative ranking of human observers on a clinically realistic defect detection task, and that building conceptual components of the human reading process into deep learning-based models can allow training of these models in settings where limited training images are available.

15.
J Nucl Med ; 62(4): 570-576, 2021 04.
Article in English | MEDLINE | ID: mdl-32859712

ABSTRACT

The International Atomic Energy Agency instituted a coordinated research project on the evaluation and optimization of pediatric imaging, addressing the lack of consistency in this field. The purpose was to develop and test an optimization schema for the practices of pediatric radiology and nuclear medicine. Methods: A 5-step optimization schema was developed. Once a protocol optimization is identified, the steps are as follows: identification of the imaging situation; collection of administered-activity data and evaluation of the diagnostic image quality at baseline; comparison of baseline administered activity data with published standards or other benchmarks; identification of intervention, if necessary; and implementation of intervention and evaluation. Results: Within the coordinated research project, two sites considered optimization projects regarding nuclear medicine. In this work, renal imaging using 99mTc-dimercaptosuccinic acid (DMSA) projects are presented as examples. Site 1 acquired its standard 300-s static 99mTc-DMSA studies as 5-frame dynamic studies in 29 children. Frames were added to simulate different levels of administered activity. Image quality was subjectively judged on a 3-point Likert scale. A 30% reduction in administered activity with increased imaging duration (350 s) across all age groups was shown to be acceptable. This reduction was implemented and evaluated in 31 subsequent children, yielding administered activities significantly lower than baseline (mean relative differences of 30%, 37%, and 38% for children aged 0-5, 5-10, and 10-15 y, respectively). Site 2 performed a phantom study to determine the impact of lowering administered activity on image noise, finding that administered activities could be significantly lowered if longer imaging times were used. This led to a 50%-70% reduction from baseline with no loss in image quality. Conclusion: A dose optimization approach was applied successfully for several procedures commonly performed in pediatric nuclear medicine. Results are reported for renal cortical imaging using 99mTc-DMSA, leading to significant reductions in administered activity (and thus radiation dose). This optimization schema can be successfully implemented by nuclear medicine clinics seeking to improve their approach to imaging children.


Subject(s)
International Agencies , Nuclear Medicine , Pediatrics , Research
16.
J Nucl Med ; 62(3): 422-430, 2021 03.
Article in English | MEDLINE | ID: mdl-32646881

ABSTRACT

The Nuclear Medicine Global Initiative was formed in 2012 by 13 international organizations to promote human health by advancing the field of nuclear medicine and molecular imaging by supporting the practice and application of nuclear medicine. The first project focused on standardization of administered activities in pediatric nuclear medicine and resulted in 2 articles. For its second project the Nuclear Medicine Global Initiative chose to explore issues impacting on access and availability of radiopharmaceuticals around the world. Methods: Information was obtained by survey responses from 35 countries on available radioisotopes, radiopharmaceuticals, and kits for diagnostic and therapeutic use. Issues impacting on access and availability of radiopharmaceuticals in individual countries were also identified. Results: Detailed information on radiopharmaceuticals used in each country, and sources of supply, was evaluated. Responses highlighted problems in access, particularly due to the reliance on a sole provider, regulatory issues, and reimbursement, as well as issues of facilities and workforce, particularly in low- and middle-income countries. Conclusion: Strategies to address access and availability of radiopharmaceuticals are outlined, to enable timely and equitable patient access to nuclear medicine procedures worldwide. In the face of disruptions to global supply chains by the coronavirus disease 2019 outbreak, renewed focus on ensuring a reliable supply of radiopharmaceuticals is a major priority for nuclear medicine practice globally.


Subject(s)
Internationality , Nuclear Medicine/statistics & numerical data , Radiopharmaceuticals/supply & distribution , Positron-Emission Tomography , Radiopharmaceuticals/therapeutic use , Tomography, Emission-Computed, Single-Photon
17.
Phys Med Biol ; 65(23): 235025, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33263312

ABSTRACT

Skeletal scintigraphy is most performed in pediatric patients using the radiopharmaceutical 99mTc labelled methylene diphosphonate (99mTc-MDP). Reference biokinetic models for 99mTc-MDP indicate 50% of the administered activity is uniformly localized to the interior bone surfaces (trabecular and cortical regions), yet imaging data clearly show some preferential uptake to the epiphyseal growth plates of the long bones. To explore the dosimetric consequences of these regional activity concentrations, we have modified mesh-type computational phantoms of the International Commission on Radiological Protection (ICRP) reference pediatric series to explicitly include geometric models of the epiphyseal growth plates (2 mm in thickness) within the left/right, distal/proximal ends of the humeri, radii, ulnae, femora, tibia, and fibulae. Bone mineral activity from the ICRP Publication 128 biokinetic model for 99mTc-MDP (ICRP 2015) was then partitioned to the growth plates at values of 0.5%, 4.4%, 8.3%, 12.2%, 16.1%, and 20%. Radiation transport simulations were performed to compute 99mTc S-values and organ dose coefficients to the soft tissues and to bone site-specific regions of spongiosa. As the percentage of bone activity assigned to the growth plates was increased (from 0.5% to 20%), absorbed doses to the soft tissue organs, active bone marrow, bone endosteum (BE), as well as the detriment-weighted dose, were shown to decrease from their nominal values (no substantial growth plate activity), while epiphyseal plate self-doses increased. In the 15 year old male phantom, moving from 0.5% to 20% relative bone activity within the epiphyseal plates resulted in a 15% reduction in active marrow (AM) and BE dose, a 10% reduction in mean soft tissue and detriment-weighted dose, and a 6.3-fold increase in epiphyseal plate self-dose. In the newborn female phantom, we observed a 18% decrease in AM and BE dose, a 10% decrease in mean soft tissue dose, a 15% decrease in detriment-weighted dose, and 12.8-fold increase in epiphyseal plate self-dose. Increases (to 3 mm) and decreases (to 1 mm) in the assumed growth plate thickness of our models were shown to impact only the growth plate self-dose. Future work in differential quantification of 99mTc-MDP activity-growth plates versus other bone surfaces-is required to provide clinically realistic data on activity partitioning as a function of patient age, and perhaps skeletal site. The phantom series presented here may be used to develop more optimized age-related guidance on 99mTc-MDP administered activities to children.


Subject(s)
Bone and Bones/diagnostic imaging , Growth Plate/metabolism , Technetium Tc 99m Medronate/metabolism , Adolescent , Biological Transport , Bone and Bones/metabolism , Child , Child, Preschool , Female , Growth Plate/diagnostic imaging , Humans , Infant, Newborn , Male , Radiometry , Radionuclide Imaging , Tomography, X-Ray Computed
18.
Am J Gastroenterol ; 115(11): 1830-1839, 2020 11.
Article in English | MEDLINE | ID: mdl-33156102

ABSTRACT

INTRODUCTION: Adult standards for gastric emptying scintigraphy, including the type of meal and range of normative values for percent gastric emptying, are routinely used in pediatric practice, but to date have not been validated. The purpose of this study is to determine whether the use of adult criteria for gastric emptying scintigraphy is valid for children and whether alternative nonstandard meals can also be offered based on these criteria. METHODS: This retrospective study analyzed patients (n = 1,151 total) who underwent solid-phase gastric emptying scintigraphy. Patients were stratified into normal and delayed gastric emptying cohorts based on adult criteria, i.e., with normal gastric emptying defined as ≤10% gastric retention at 4 hours. Patients were further stratified based on the type of meal, namely complete or partial adult standard meals or alternative cheese-based meals. Percent gastric retention values at 1, 2, 3, and 4 hours were compared. RESULTS: The median (95% upper reference limit) percentage gastric retention values for the complete standard meal were 72% (93%) at 1 hour, 39% (65%) at 2 hours, 15% (33%) at 3 hours, and 6% (10 %) at 4 hours. By comparison, the values for cheese-based meals were 60% (87%) at 1 hour, 29% (61%) at 2 hours, 10% (30%) at 3 hours, and 5% (10%) at 4 hours. Consumption of at least 50% of the standard meal yielded similar retention percentages; 68% (89%) at 1 hour, 32% (57%) at 2 hours, 10% (29%) at 3 hours, and 5% (10%) at 4 hours. There were no significant age- or sex-specific differences using the adult criteria. DISCUSSION: The adult normative standards for gastric emptying scintigraphy are applicable for use in the pediatric population. These same standards can be also be applied to nonstandard meal options, including cheese-based alternative meals and partial standard meals.


Subject(s)
Diagnostic Techniques, Digestive System , Gastric Emptying , Meals , Radionuclide Imaging/methods , Radiopharmaceuticals , Adolescent , Cheese , Child , Eggs , Female , Food , Humans , Male , Reference Values , Young Adult
19.
Phys Med Biol ; 65(23): 235026, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33245053

ABSTRACT

Current guidelines for administered activity (AA) in pediatric nuclear medicine imaging studies are based on a 2016 harmonization of the 2010 North American Consensus guidelines and the 2007 European Association of Nuclear Medicine pediatric dosage card. These guidelines assign AA scaled to patient body mass, with further constraints on maximum and minimum values of radiopharmaceutical activity. These guidelines, however, are not formulated based upon a rigor-ous evaluation of diagnostic image quality. In a recent study of the renal cortex imaging agent 99mTc-DMSA (Li Y et al 2019), body mass-based dosing guidelines were shown to not give the same level of image quality for patients of differing body mass. Their data suggest that patient girth at the level of the kidneys may be a better morphometric parameter to consider when selecting AA for renal nuclear medicine imaging. The objective of the present work was thus to develop a dedicated series of computational phantoms to support image quality and organ dose studies in pediatric renal imaging using 99mTc-DMSA or 99mTc-MAG3. The final library consists of 50 male and female phantoms of ages 0 to 15 years, with percentile variations (5th to 95th) in waist circumference (WC) at each age. For each phantom, nominal values of kidney volume, length, and depth were incorporated into the phantom design. Organ absorbed doses, detriment-weighted doses, and stochastic risks were assessed using ICRP reference biokinetic models for both agents. In Monte Carlo radiation transport simulations, organ doses for these agents yielded detriment-weighted dose coefficients (mSv/MBq) that were in general larger than current ICRP values of the effective dose coefficients (age and WC-averaged ratios of eDW/e were 1.40 for the male phantoms and 1.49 for the female phantoms). Values of risk index (ratio of radiation-induced to natural background cancer incidence risk x 100) varied between 0.062 (newborns) to 0.108 (15-year-olds) for 99mTc-DMSA and between 0.026 (newborns) to 0.122 (15-year-olds) for 99mTc-MAG3. Using tallies of photon exit fluence as a rough surrogate for uniform image quality, our study demonstrated that through body region-of-interest optimization of AA, there is the potential for further dose and risk reductions of between factors of 1.5 to 3.0 beyond simple weight-based dosing guidance.


Subject(s)
Diagnostic Imaging/instrumentation , Kidney/diagnostic imaging , Phantoms, Imaging , Technetium Tc 99m Dimercaptosuccinic Acid , Technetium Tc 99m Mertiatide , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Monte Carlo Method , Risk Assessment
20.
Med Phys ; 46(11): 4847-4856, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31448427

ABSTRACT

PURPOSE: In the current clinical practice, administered activity (AA) for pediatric molecular imaging is often based on the North American expert consensus guidelines or the European Association of Nuclear Medicine dosage card, both of which were developed based on the best clinical practice. These guidelines were not formulated using a rigorous evaluation of diagnostic image quality (IQ) relative to AA. In the guidelines, AA is determined by a weight-based scaling of the adult AA, along with minimum and maximum AA constraints. In this study, we use task-based IQ assessment methods to rigorously evaluate the efficacy of weight-based scaling in equalizing IQ using a population of pediatric patients of different ages and body weights. METHODS: A previously developed projection image database was used. We measured task-based IQ, with respect to the detection of a renal functional defect at six different AA levels (AA relative to the AA obtained from the guidelines). IQ was assessed using an anthropomorphic model observer. Receiver-operating characteristics (ROC) analysis was applied; the area under the ROC curve (AUC) served as a figure-of-merit for task performance. In addition, we investigated patient girth (circumference) as a potential improved predictor of the IQ. RESULTS: The data demonstrate a monotonic and modestly saturating increase in AUC with increasing AA, indicating that defect detectability was limited by quantum noise and the effects of object variability were modest over the range of AA levels studied. The AA for a given value of the AUC increased with increasing age. The AUC vs AA plots for all the patient ages indicate that, for the current guidelines, the newborn and 10- and 15-yr phantoms had similar IQ for the same AA suggested by the North American expert consensus guidelines, but the 5- and 1-yr phantoms had lower IQ. The results also showed that girth has a stronger correlation with the needed AA to provide a constant AUC for 99m Tc-DMSA renal SPECT. CONCLUSIONS: The results suggest that (a) weight-based scaling is not sufficient to equalize task-based IQ for patients of different weights in pediatric 99m Tc-DMSA renal SPECT; and (b) patient girth should be considered instead of weight in developing new administration guidelines for pediatric patients.


Subject(s)
Body Weight , Practice Guidelines as Topic , Technetium Tc 99m Dimercaptosuccinic Acid , Tomography, Emission-Computed, Single-Photon/methods , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Quality Control , Technetium Tc 99m Dimercaptosuccinic Acid/administration & dosage , Tomography, Emission-Computed, Single-Photon/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...