Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 131(1-2): 70-82, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17257754

ABSTRACT

In humans, the acute inflammatory reaction caused by ultraviolet (UV) radiation is well studied and the sensory changes that are found have been used as a model of cutaneous hyperalgesia. Similar paradigms are now emerging as rodent models of inflammatory pain. Using a narrowband UVB source, we irradiated the plantar surface of rat hind paws. This produced the classical feature of inflammation, erythema, and a significant dose-dependent reduction in both thermal and mechanical paw withdrawal thresholds. These sensory changes peaked 48h after irradiation. At this time there is a graded facilitation of noxious heat evoked (but not basal) c-fos-like immunoreactivity in the L4/5 segments of the spinal cord. We also studied the effects of established analgesic compounds on the UVB-induced hyperalgesia. Systemic as well as topical application of ibuprofen significantly reduced both thermal and mechanical hyperalgesia. Systemic morphine produced a dose-dependent and naloxone sensitive reversal of sensory changes. Similarly, the peripherally restricted opioid loperamide also had a dose-dependent anti-hyperalgesic effect, again reversed by naloxone methiodide. Sequestration of NGF, starting at the time of UVB irradiation, significantly reduced sensory changes. We conclude that UVB inflammation produces a dose-dependent hyperalgesic state sensitive to established analgesics. This suggests that UVB inflammation in the rat may represent a useful translational tool in the study of pain and the testing of analgesic agents.


Subject(s)
Disease Models, Animal , Hyperalgesia/etiology , Hyperalgesia/immunology , Radiodermatitis/etiology , Radiodermatitis/immunology , Ultraviolet Rays , Animals , Cytokines/immunology , Male , Rats , Rats, Sprague-Dawley
2.
Anal Biochem ; 290(2): 272-6, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11237329

ABSTRACT

TGF-beta is a ubiquitous protein that exhibits a broad spectrum of biological activity. The prokaryotic expression and purification of the extracellular domain of the type II TGF-beta receptor (T beta R-II-ED), without the need for fusion protein cleavage and refolding, is described. The recombinant T beta R-II-ED fusion protein bound commercially available TGF-beta 1 and displayed an affinity of 11.1 nM. In a modified ELISA, receptor binding to TGF-beta1 was inhibited by TGF-beta 3. The technique lends itself to high-throughput screening of combinatorial libraries for the identification of TGF-beta agonists and antagonists and this, in turn, may have important therapeutic implications.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Receptors, Transforming Growth Factor beta/biosynthesis , Transforming Growth Factor beta/chemistry , Binding, Competitive , Humans , Kinetics , Polymerase Chain Reaction/methods , Protein Serine-Threonine Kinases , Protein Structure, Tertiary , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/agonists , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1 , Transforming Growth Factor beta3
3.
Br J Cancer ; 74(7): 1074-80, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8855977

ABSTRACT

This study examined the autocrine production of TGF-beta 1, -beta 2 and -beta 3 in culture supernatants from tumour-derived (H series, n = 7; BICR series, n = 5), Ha-ras-transfected (n = 4) and normal (n = 2) human keratinocytes using a sandwich enzyme-linked immunosorbent assay (ELISA). Detection limits were 39.0 pg ml-1 for TGF-beta 1, 78.0 pg ml-1 for TGF-beta 2 and 1.9 ng ml-1 for TGF-beta 3. Tumour-derived oral keratinocytes predominantly produced less TGF-beta 1 than normal oral epithelial cells; the expression of endogenous TGF-beta 2 was variable. In keratinocytes containing mutant Ha-ras, TGF-beta 1 production was enhanced and TGF-beta 2 was undetectable. TGF-beta 3 mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR) but the protein was not detected in conditioned media, most probably because of the low detection limits of the ELISA for this isoform. Neutralisation experiments indicated that the latent TGF-beta peptide was secreted in keratinocyte conditioned medium. Seven tumour-derived keratinocyte cell lines (H series) and fibroblasts separated from normal (n = 1) and tumour-derived (n = 2) keratinocyte cultures were examined for their response to exogenous TGF-beta 1, -beta 2 and -beta 3. Six of seven tumour-derived keratinocyte cell lines were inhibited by TGF-beta 1 and TGF-beta 2 (-beta 1 > -beta 2); one cell line was refractory to both TGF-beta 1 and TGF-beta 2. Keratinocytes were inhibited (4 of 7), stimulated (1 of 7) or failed to respond (2 of 7) to TGF-beta 3, TGF-beta 1, -beta 2 and -beta 3 stimulated both normal and tumour-associated fibroblasts, but the tumour-associated fibroblasts showed less response to the ligands than their normal counterparts following prolonged treatment with each isoform. The results demonstrate variable autocrine production of TGF-beta isoforms by malignant keratinocytes, with loss of TGF-beta 1 generally associated with the tumour-derived phenotype and modification of endogenous isoform production dependent on the genetic background of the tumour cells. Further, the variable response of the tumour-derived keratinocytes and contiguous fibroblasts to the TGF-beta isoforms suggests that dysregulation of TGF-beta autocrine and paracrine networks are common characteristics of squamous epithelial malignancy.


Subject(s)
Fibroblasts/metabolism , Genes, p53/genetics , Genes, ras/genetics , Keratinocytes/metabolism , Neoplasm Proteins/biosynthesis , Transforming Growth Factor beta/biosynthesis , Cell Line , Fibroblasts/drug effects , Humans , Keratinocytes/drug effects , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/pharmacology , Transfection , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL