Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534320

ABSTRACT

The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Mice , Humans , Animals , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Cyclic AMP/metabolism , Myocytes, Cardiac/metabolism , Mice, Transgenic , Caveolins/metabolism , Mammals/metabolism
2.
Cell Rep ; 42(8): 112998, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590146

ABSTRACT

The complex morphology of neurons poses a challenge for proteostasis because the majority of lysosomal degradation machinery is present in the cell soma. In recent years, however, mature lysosomes were identified in dendrites, and a fraction of those appear to fuse with the plasma membrane and release their content to the extracellular space. Here, we report that dendritic lysosomes are heterogeneous in their composition and that only those containing lysosome-associated membrane protein (LAMP) 2A and 2B fuse with the membrane and exhibit activity-dependent motility. Exocytotic lysosomes dock in close proximity to GluN2B-containing N-methyl-D-aspartate-receptors (NMDAR) via an association of LAMP2B to the membrane-associated guanylate kinase family member SAP102/Dlg3. NMDAR-activation decreases lysosome motility and promotes membrane fusion. We find that chaperone-mediated autophagy is a supplier of content that is released to the extracellular space via lysosome exocytosis. This mechanism enables local disposal of aggregation-prone proteins like TDP-43 and huntingtin.


Subject(s)
Chaperone-Mediated Autophagy , Guanylate Kinases , Exocytosis , Lysosomes , Dendrites
3.
Sci Signal ; 16(790): eabn9405, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339181

ABSTRACT

During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.


Subject(s)
Endothelial Cells , Extracellular Matrix Proteins , Mice , Animals , Extracellular Matrix Proteins/metabolism , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Collagen/metabolism
4.
Sci Signal ; 14(675)2021 03 23.
Article in English | MEDLINE | ID: mdl-33758062

ABSTRACT

NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.


Subject(s)
Calcium/metabolism , Membrane Microdomains/metabolism , Microtubule-Associated Proteins/metabolism , NADP/analogs & derivatives , Animals , CD3 Complex/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , Humans , Jurkat Cells , Lymphocyte Activation , Microtubule-Associated Proteins/genetics , NADP/metabolism , Protein Binding , Rats , Receptors, Antigen, T-Cell/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , T-Lymphocytes/metabolism
5.
Sci Rep ; 10(1): 22443, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33384430

ABSTRACT

The glycocalyx regulates the interaction of mammalian cells with extracellular molecules, such as cytokines. However, it is unknown to which extend the glycocalyx of distinct cancer cells control the binding and uptake of nanoparticles. In the present study, exome sequencing data of cancer patients and analysis of distinct melanoma and bladder cancer cell lines suggested differences in cancer cell-exposed glycocalyx components such as heparan sulphate. Our data indicate that glycocalyx differences affected the binding of cationic chitosan nanocapsules (Chi-NCs). The pronounced glycocalyx of bladder cancer cells enhanced the internalisation of nanoencapsulated capsaicin. Consequently, capsaicin induced apoptosis in the cancer cells, but not in the less glycosylated benign urothelial cells. Moreover, we measured counterion condensation on highly negatively charged heparan sulphate chains. Counterion condensation triggered a cooperative binding of Chi-NCs, characterised by a weak binding rate at low Chi-NC doses and a strongly increased binding rate at high Chi-NC concentrations. Our results indicate that the glycocalyx of tumour cells controls the binding and biological activity of nanoparticles. This has to be considered for the design of tumour cell directed nanocarriers to improve the delivery of cytotoxic drugs. Differential nanoparticle binding may also be useful to discriminate tumour cells from healthy cells.


Subject(s)
Antipruritics/administration & dosage , Antipruritics/pharmacokinetics , Capsaicin/administration & dosage , Capsaicin/pharmacokinetics , Chitosan/chemistry , Glycocalyx/metabolism , Nanocapsules/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heparitin Sulfate/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Organ Specificity , Protein Binding , Static Electricity , Theranostic Nanomedicine
6.
Sci Signal ; 11(561)2018 12 18.
Article in English | MEDLINE | ID: mdl-30563862

ABSTRACT

The earliest intracellular signals that occur after T cell activation are local, subsecond Ca2+ microdomains. Here, we identified a Ca2+ entry component involved in Ca2+ microdomain formation in both unstimulated and stimulated T cells. In unstimulated T cells, spontaneously generated small Ca2+ microdomains required ORAI1, STIM1, and STIM2. Super-resolution microscopy of unstimulated T cells identified a circular subplasmalemmal region with a diameter of about 300 nm with preformed patches of colocalized ORAI1, ryanodine receptors (RYRs), and STIM1. Preformed complexes of STIM1 and ORAI1 in unstimulated cells were confirmed by coimmunoprecipitation and Förster resonance energy transfer studies. Furthermore, within the first second after T cell receptor (TCR) stimulation, the number of Ca2+ microdomains increased in the subplasmalemmal space, an effect that required ORAI1, STIM2, RYR1, and the Ca2+ mobilizing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate). These results indicate that preformed clusters of STIM and ORAI1 enable local Ca2+ entry events in unstimulated cells. Upon TCR activation, NAADP-evoked Ca2+ release through RYR1, in coordination with Ca2+ entry through ORAI1 and STIM, rapidly increases the number of Ca2+ microdomains, thereby initiating spread of Ca2+ signals deeper into the cytoplasm to promote full T cell activation.


Subject(s)
Calcium/metabolism , Lymphocyte Activation , ORAI1 Protein/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism , T-Lymphocytes/cytology , Animals , Calcium Signaling , Cell Membrane , Cells, Cultured , Female , Fluorescence Resonance Energy Transfer , Male , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
Eur J Cell Biol ; 95(2): 89-99, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26785612

ABSTRACT

Follicular penetration has gained increasing interest regarding (i) safety concerns about (environmentally born) xenobiotics available to the hair follicle (HF), e.g. nanomaterials or allergens which should not enter the skin, and (ii) the possibility for non-invasive follicular drug and antigen delivery. However, not much is known about barriers in the HF which have to be surpassed upon uptake and/or penetration into surrounding tissue. Thus, aim of this work was a detailed investigation of this follicular barrier function, as well as particle uptake into the HF of porcine skin which is often used as a model system for human skin for such purposes. We show that follicular tight junctions (TJs) form a continuous barrier from the infundibulum down to the suprabulbar region, complementary to the stratum corneum in the most exposed upper follicular region, but remaining as the only barrier in the less accessible lower follicular regions. In the bulbar region of the HF no TJ barrier was found, demonstrating the importance of freely supplying this hair-forming part with e.g. nutrients or hormones from the dermal microenvironment. Moreover, the dynamic character of the follicular TJ barrier was shown by modulating its permeability using EDTA. After applying polymeric model-nanoparticles (154 nm) to the skin, transmission electron microscopy revealed that the majority of the particles were localized in the upper part of the HF where the double-barrier is present. Only few penetrated deeper, reaching regions where TJs act as the only barrier, and no particles were observed in the bulbar, barrier-less region. Lastly, the equivalent expression and distribution of TJ proteins in human and porcine HF further supports the suitability of porcine skin as a predictive model to study the follicular penetration and further biological effects of dermally applied nanomaterials in humans.


Subject(s)
Hair Follicle/ultrastructure , Tight Junctions/ultrastructure , Animals , Hair Follicle/metabolism , Swine , Tight Junctions/metabolism
8.
Opt Express ; 15(14): 8532-42, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-19547187

ABSTRACT

We present a novel scattering microscopy method to detect the orientation of individual silver nanorods and to measure their relative distances. Using confocal microscopy in combination with either the fundamental or higher order laser modes, scattering images of silver nanorods were recorded. The distance between two individual nanorods was measured with an accuracy in the order of 1 nm.We detected the orientation of isolated silver nanorods with a precision of 0.5 degree that corresponds to a rotational arch of about 1 nm. The results demonstrate the potential of the technique for the visualization of non-bleaching labels in biosciences.

SELECTION OF CITATIONS
SEARCH DETAIL
...