Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Environ Sci Technol ; 58(19): 8215-8227, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687897

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are extensively utilized in varieties of products and tend to accumulate in the human body including umbilical cord blood and embryos/fetuses. In this study, we conducted an assessment and comparison of the potential early developmental toxicity of perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid, perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate, and perfluorobutyric acid at noncytotoxic concentrations relevant to human exposure using models based on human embryonic stem cells in both three-dimensional embryoid body (EB) and monolayer differentiation configurations. All six compounds influenced the determination of cell fate by disrupting the expression of associated markers in both models and, in some instances, even led to alterations in the formation of cystic EBs. The expression of cilia-related gene IFT122 was significantly inhibited. Additionally, PFOS and PFOA inhibited ciliogenesis, while PFOA specifically reduced the cilia length. Transcriptome analysis revealed that PFOS altered 1054 genes and disrupted crucial signaling pathways such as WNT and TGF-ß, which play integral roles in cilia transduction and are critical for early embryonic development. These results provide precise and comprehensive insights into the potential adverse health effects of these six PFAS compounds directly concerning early human embryonic development.


Subject(s)
Fluorocarbons , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/drug effects , Fluorocarbons/toxicity , Cell Differentiation/drug effects
2.
Environ Pollut ; 347: 123743, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462195

ABSTRACT

Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 µM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.


Subject(s)
Flame Retardants , Humans , Flame Retardants/analysis , Organophosphates/toxicity , Phosphates/analysis , Cell Differentiation , Esters , Environmental Monitoring
3.
Sci Total Environ ; 913: 169702, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38163615

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of highly stable chemicals, widely used in everyday products, and widespread in the environment, even in pregnant women. While epidemiological studies have linked prenatal exposure to PFAS with atopic dermatitis in children, little is known about their toxic effects on skin development, especially during the embryonic stage. In this study, we utilized human embryonic stem cells to generate non-neural ectoderm (NNE) cells and exposed them to six PFAS (perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid (PFBA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorobutyric acid (PFBS)) during the differentiation process to assess their toxicity to early skin development. Our results showed that PFOS altered the spindle-like morphology of NNE cells to a pebble-like morphology, and disrupted several NNE markers, including KRT16, SMYD1, and WISP1. The six PFAS had a high potential to cause hypohidrotic ectodermal dysplasia (HED) by disrupting the expression levels of HED-relevant genes. Transcriptomic analysis revealed that PFOS treatment produced the highest number (1156) of differentially expressed genes (DEGs) among the six PFAS, including the keratinocyte-related genes KRT6A, KRT17, KRT18, KRT24, KRT40, and KRT81. Additionally, we found that PFOS treatment disturbed several signaling pathways that are involved in regulating skin cell fate decisions and differentiation, including TGF-ß, NOTCH, Hedgehog, and Hippo signaling pathways. Interestingly, we discovered that PFOS inhibited, by partially interfering with the expression of cytoskeleton-related genes, the ciliogenesis of NNE cells, which is crucial for the intercellular transduction of the above-mentioned signaling pathways. Overall, our study suggests that PFAS can inhibit ciliogenesis and hamper the transduction of important signaling pathways, leading potential congenital skin diseases. It sheds light on the underlying mechanisms of early embryonic skin developmental toxicity and provides an explanation for the epidemiological data on PFAS. ENVIRONMENTAL IMPLICATION: We employed a model based on human embryonic stem cells to demonstrate that PFOS has the potential to elevate the risk of hypohidrotic ectodermal dysplasia. This is achieved by targeting cilia, inhibiting ciliogenesis, and subsequently disrupting crucial signaling pathways like TGF-ß, NOTCH, Hedgehog, and Hippo, during the early phases of embryonic skin development. Our study highlights the dangers and potential impacts of six PFAS pollutants on human skin development. Additionally, we emphasize the importance of closely considering PFHxA, PFBA, PFHxS, and PFBS, as they have shown the capacity to modify gene expression levels, albeit to a lesser degree.


Subject(s)
Alkanesulfonic Acids , Ectodermal Dysplasia 1, Anhidrotic , Environmental Pollutants , Fluorocarbons , Child , Humans , Female , Pregnancy , Animals , Hedgehogs , Alkanesulfonic Acids/toxicity , Alkanesulfonates , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Transforming Growth Factor beta , Microtubules
4.
PNAS Nexus ; 3(1): pgae015, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38274119

ABSTRACT

Tea is one of the world's most popular and widely consumed beverages. It is a common pastime to enjoy a cup of tea in the sunshine. However, little attention has been given to understanding the possible photochemical reactions occurring beneath the calm surface of brewed tea. Epigallocatechin gallate (EGCG), which is widely used in food and beverages, is the most significant active ingredient found in tea. In this study, we investigated the presence of free radicals in both an aqueous EGCG solution and brewed tea under simulated sunlight conditions. To our surprise, we unexpectedly observed the production of hydroxyl radicals (•OH) in brewed tea. It was found that sunlight irradiation played a critical role in the formation of •OH, independent of the presence of metal ions. Furthermore, we demonstrated that the •OH generated from the EGCG aqueous solution induced cell cytotoxicity and DNA damage in vitro. Considering the crucial role of •OH in various fields, including human health and the environment, it is important to further explore the practical implications of •OH production in brewed tea under sunlight. In summary, our study unveils the unexpected formation of •OH in brewed tea and emphasizes the significance of sunlight-induced reactions. The observed cytotoxic and DNA-damaging effects of •OH emphasize the importance of understanding the potential health consequences associated with tea consumption. Further research in this area will contribute to a better understanding of the broader implications of •OH production in brewed tea under sunlight.

5.
J Hazard Mater ; 465: 133028, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38006857

ABSTRACT

Recent studies have highlighted the presence of potentially harmful chemicals, such as neonicotinoids (NEOs) and organophosphate esters (OPEs), in everyday items. Despite their potential threats to human health, these dangers are often overlooked. In a previous study, we discovered that NEOs and OPEs can negatively impact development, but liver metabolism can help mitigate their harmful effects. In our current research, our objective was to investigate the toxicity mechanisms associated with NEOs, OPEs, and their liver metabolites using a human embryonic stem cell-based differentiation model that mimics early embryonic development. Our transcriptomics data revealed that NEOs and OPEs significantly influenced the expression of hundreds of genes, disrupted around 100 biological processes, and affected two signaling pathways. Notably, the BMP4 signaling pathway emerged as a key player in the disruption caused by exposure to these pollutants. Both NEOs and OPEs activated BMP4 signaling, potentially impacting early embryonic development. Interestingly, we observed that treatment with a human liver S9 fraction, which mimics liver metabolism, effectively reduced the toxic effects of these pollutants. Most importantly, it reversed the adverse effects dependent on the BMP4 pathway. These findings suggest that normal liver function plays a crucial role in detoxifying environmental pollutants and provides valuable experimental insights for addressing this issue.


Subject(s)
Environmental Pollutants , Flame Retardants , Pregnancy , Female , Humans , Esters/toxicity , Organophosphates/toxicity , Liver/metabolism , Flame Retardants/analysis , China , Environmental Monitoring , Neonicotinoids , Bone Morphogenetic Protein 4
6.
Environ Sci Technol ; 57(48): 19156-19168, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37978927

ABSTRACT

Bisphenol A (BPA) is a common endocrine disruptor widely used in the production of electronic, sports, and medical equipment, as well as consumer products like milk bottles, dental sealants, and thermal paper. Despite its widespread use, current assessments of BPA exposure risks remain limited due to the lack of comprehensive cross-species comparative analyses. To address this gap, we conducted a study aimed at identifying genes and fundamental molecular processes consistently affected by BPA in various species and tissues, employing an effective data integration method and bioinformatic analyses. Our findings revealed that exposure to BPA led to significant changes in processes like lipid metabolism, proliferation, and apoptosis in the tissues/cells of mammals, fish, and nematodes. These processes were found to be commonly affected in adipose, liver, mammary, uterus, testes, and ovary tissues. Additionally, through an in-depth analysis of signaling pathways influenced by BPA in different species and tissues, we observed that the JUN/FOS, EGFR, ER, PPARG, and P53 pathways, along with their downstream key transcription factors and kinases, were all impacted by BPA. Our study provides compelling evidence that BPA indeed induces similar toxic effects across different species and tissues. Furthermore, our investigation sheds light on the underlying molecular mechanisms responsible for these toxic effects. By uncovering these mechanisms, we gain valuable insights into the potential health implications associated with BPA exposure, highlighting the importance of comprehensive assessments and awareness of this widespread endocrine disruptor.


Subject(s)
Endocrine Disruptors , PPAR gamma , Animals , Female , Tumor Suppressor Protein p53/genetics , Transcriptome , Endocrine Disruptors/toxicity , Benzhydryl Compounds/toxicity , ErbB Receptors , Mammals
7.
Genes Dev ; 37(19-20): 865-882, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37852796

ABSTRACT

The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.


Subject(s)
Histone Acetyltransferases , Lysine , Animals , Humans , Mice , Acetylation , Cell Adhesion/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Histone Acetyltransferases/metabolism , Lysine/metabolism
8.
Cutan Ocul Toxicol ; 42(4): 264-272, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602871

ABSTRACT

OBJECTIVE: To explore the retinal toxicity of pharmaceuticals and personal care products (PPCPs), flame retardants, bisphenols, phthalates, and polycyclic aromatic hydrocarbons (PAHs) on human retinal progenitor cells (RPCs) and retinal pigment epithelial (RPE) cells, which are the primary cell types at the early stages of retinal development, vital for subsequent functional cell type differentiation, and closely related to retinal diseases. MATERIALS AND METHODS: After 23 days of differentiation, human embryonic stem cell (hESC)-based retinal pre-organoids, containing RPCs and RPE cells, were exposed to 10, 100, and 1000 nM pesticides (butachlor, terbutryn, imidacloprid, deltamethrin, pendimethalin, and carbaryl), flame retardants (PFOS, TBBPA, DBDPE, and TDCIPP), PPCPs (climbazole and BHT), and other typical pollutants (phenanthrene, DCHP, and BPA) for seven days. Then, mRNA expression changes were monitored and compared. RESULTS: (1) The selected pollutants did not show strong effects at environmental and human-relevant concentrations, although the effects of flame retardants were more potent than those of other categories of chemicals. Surprisingly, some pollutants with distinct structures showed similar adverse effects. (2) Exposure to pollutants induced different degrees of cell detachment, probably due to alterations in extracellular matrix and/or cell adhesion. CONCLUSIONS: In this study, we established a retinal pre-organoid model suitable for evaluating multiple pollutants' effects, and pointed out the potential retinal toxicity of flame retardants, among other pollutants. Nevertheless, the potential mechanisms of toxicity and the effects on cell detachment are still unclear and deserve further exploration. Additionally, this model holds promise for screening interventions aimed at mitigating the detrimental effects of these pollutants.


Subject(s)
Environmental Pollutants , Flame Retardants , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Environmental Pollutants/toxicity , Flame Retardants/pharmacology , Flame Retardants/toxicity , Retina/metabolism , Organoids , Cell Differentiation
9.
Toxicol Ind Health ; 39(6): 336-344, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37160417

ABSTRACT

In our daily life, we are exposed to numerous industrial chemicals that may be harmful to the retina, which is a delicate and sensitive part of our eyes. This could lead to irreversible changes and cause retinal diseases or blindness. Current retinal environmental health studies primarily utilize animal models, isolated mammalian retinas, animal- or human-derived retinal cells, and retinal organoids, to address both pre- and postnatal exposure. However, as there is limited toxicological information available for specific populations, human induced pluripotent stem cell (hiPSC)-induced models could be effective tools to supplement such data. In order to obtain more comprehensive and reliable toxicological information, we need more appropriate models, novel evaluation methods, and computational technologies to develop portable equipment. This review mainly focused on current toxicology models with particular emphasis on retinal organoids, and it looks forward to future models, analytical methods, and equipment that can efficiently and accurately evaluate retinal toxicity.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Humans , Retina , Organoids , Models, Animal , Mammals
10.
Chemosphere ; 310: 136924, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36272632

ABSTRACT

Tetrabromobisphenol A (TBBPA) is widely used in industrial production as a halogenated flame retardant (HFR). Its substitutes and derivatives are also commonly employed as HFRs. Consequently, they can be frequently detected in environmental and human samples. The potential developmental toxicity of TBBPA and its analogs, particularly to the human liver, is still controversial or not thoroughly assessed. Therefore, in this study, we focused on the early stages of human liver development to explore the toxic effects of those HFRs, by using a human embryonic stem cell liver differentiation model. We concluded that nanomolar treatments (1, 10, and 100 nM) of those pollutants may not exert significant interference to liver development and functions. However, at 5 µM doses, TBBPA and its analogs severely affected liver functions, such as glycogen storage, and caused lipid accumulation. Furthermore, TBBPA-bis(allyl ether) showed the most drastic effects among the six compounds tested. Taken together, our findings support the view that TBBPA can be used safely, provided its amounts are strictly controlled. Nonetheless, TBBPA alternatives or derivatives may exhibit stronger adverse effects than TBBPA itself, and may not be safer choices for manufacturing applications when utilized in a large and unrestricted way.


Subject(s)
Flame Retardants , Human Embryonic Stem Cells , Polybrominated Biphenyls , Humans , Flame Retardants/toxicity , Liver , Polybrominated Biphenyls/toxicity
11.
Environ Int ; 170: 107572, 2022 12.
Article in English | MEDLINE | ID: mdl-36228552

ABSTRACT

Graphene quantum dots (GQDs) have been broadly applied in biomedicine in recent years, and their environmental exposure and toxicological impacts have raised increasing concerns. The nanosafety assessment on the nervous system is one of the most important aspects, and potential effects of GQDs on neurodevelopment and the underlying mechanism are still elusive. In this study, the neural developmental toxicities of OH-GQDs and NH2-GQDs were investigated using the mouse embryonic stem cells (mESCs). The results revealed that OH-GQDs significantly inhibited the ectoderm development, and reduced the neural precursor formation and neurogenesis during the neural differentiation of the mESCs. The exploration on the mechanism uncovered that the increased enrichment of H3K27me3 at the promoter region of the Smad6 gene was involved in histone modification-activated BMP signal pathway, which consequently influenced its regulatory effects on neural differentiation. Additionally, OH-GQDs elicited a stronger effect on inducing the imbalance of histone modification, and resulted in higher latency of neural differentiation disturbance than did NH2-GQDs, suggesting surface functionalization-specific effects of GQDs on neurodevelopmental toxicity. This study would provide new insights in not only the adverse effects of GQDs on neurodevelopment, but also the influence from the chemical modification of GQDs on their bioactivities.


Subject(s)
Graphite , Animals , Mice , Graphite/toxicity , Histone Code , Cell Differentiation
12.
Environ Sci Technol ; 56(20): 14668-14679, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36178254

ABSTRACT

Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.


Subject(s)
Environmental Pollutants , Androgens , Environmental Pollutants/toxicity , High-Throughput Screening Assays/methods , Progesterone , Teratogens , Xenobiotics
13.
Environ Sci Technol ; 56(12): 8496-8506, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35609006

ABSTRACT

The neurodevelopmental process is highly vulnerable to environmental stress from exposure to endocrine-disrupting chemicals. Perfluorinated iodine alkanes (PFIs) possess estrogenic activities, while their potential neurodevelopmental toxicity remains blurry. In the present study, the effects of two PFIs, including dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were investigated in the neural differentiation of the mouse embryonic stem cells (mESCs). Without influencing the cytobiological process of the mESCs, PFIs interfered the triploblastic development by increasing ectodermal differentiation, thus promoting subsequent neurogenesis. The temporal regulation of PFIs in Notch-Hes signaling through the targeting of mmu-miRNA-34a-5p provided a substantial explanation for the underlying mechanism of PFI-promoted mESC commitment to the neural lineage. The findings herein provided new knowledge on the potential neurodevelopmental toxicities of PFIs, which would help advance the health risk assessment of these kinds of emerging chemicals.


Subject(s)
Iodine , MicroRNAs , Alkanes , Animals , Cell Differentiation/physiology , Iodides , Mice , Mouse Embryonic Stem Cells
14.
Environ Pollut ; 306: 119467, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35577262

ABSTRACT

Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs' potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.


Subject(s)
Flame Retardants , Polybrominated Biphenyls , Female , Humans , Pregnancy , Flame Retardants/analysis , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/analysis , Heart , Polybrominated Biphenyls/toxicity
15.
Environ Pollut ; 285: 117472, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34082367

ABSTRACT

Bisphenol A (BPA) is a high-production-volume monomer for the manufacture of a wide variety of polycarbonate plastics and resins. Evidence suggests BPA can induce carcinogenesis, reproductive toxicity, abnormal inflammatory or immune response, and developmental disorders of the brain or nervous system. However, whether BPA affects the very same basic molecular processes in all the in vivo and in vitro systems employed to exert its molecular mechanisms of toxicity remains to be clarified. In this study, we collected multi-source global transcriptomics datasets for BPA-exposed organisms and cells, and evaluated the adverse effects of BPA by using data integration and gene functional enrichment analyses. We found that BPA may affect basic cellular processes, such as cell growth, survival, proliferation, differentiation, and apoptosis, independent of species and specific in vivo or in vitro systems. Mechanistically, BPA could regulate cell-extra cellular matrix interactions via challenging TGF-beta signaling pathways. Furthermore, we compared our in vitro BPA-dependent mouse embryoid body (EB) global differentiation transcriptomics with all the other datasets. We verified the EB-based toxicological system could recapitulate several in vivo and other in vitro findings very efficiently, and in a less time- and resource-consuming fashion. Taken together, this study emphasizes the utility of meta-analyses to understand common molecular mechanisms of toxicity of synthetic chemicals.


Subject(s)
Benzhydryl Compounds , Transcriptome , Animals , Benzhydryl Compounds/toxicity , Mice , Phenols/toxicity , Transforming Growth Factor beta/genetics
16.
Environ Sci Technol ; 55(5): 3144-3155, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33569944

ABSTRACT

The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the in vitro differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.


Subject(s)
Graphite , Quantum Dots , Animals , Apoptosis , Cell Differentiation , Graphite/toxicity , Mice , Mouse Embryonic Stem Cells , Quantum Dots/toxicity
17.
Environ Sci Technol ; 55(4): 2440-2451, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33535745

ABSTRACT

There is an urgent need for reliable and effective models to study air pollution health effects on human lungs. Here, we report the utilization of human pluripotent stem cell (hPSC) induction models for human lung progenitor cells (hLPs) and alveolar type 2 epithelial cell-like cells (ATLs) for the toxicity assessment of benzo(a)pyrene, nano-carbon black, and nano-SiO2, as common air pollutants. We induced hPSCs to generate ATLs, which recapitulated key features of human lung type 2 alveolar epithelial cells, and tested the induction models for cellular uptake of nanoparticles and toxicity evaluations. Our findings reveal internalization of nano-carbon black, dose-dependent uptake of nano-SiO2, and interference with surfactant secretion in ATLs exposed to benzo(a)pyrene/nano-SiO2. Thus, hLP and ATL induction models could facilitate the evaluation of environmental pollutants potentially affecting the lungs. In conclusion, this is one of the first studies that managed to adopt hPSC pulmonary induction models in toxicology studies.


Subject(s)
Air Pollutants , Air Pollution , Nanoparticles , Air Pollutants/analysis , Humans , Lung , Soot/toxicity
18.
Front Pharmacol ; 12: 772768, 2021.
Article in English | MEDLINE | ID: mdl-35046808

ABSTRACT

Background: Due to the embryotoxicity found in animal studies and scarce clinical data in pregnant women, it is still controversial whether entecavir (ETV) and adefovir dipivoxil (ADV) are safe during human pregnancy. This is of paramount importance when counseling pregnant women with hepatitis B virus (HBV) on risks and benefits to their offspring. Objective: To quantify the association between administration of ETV and ADV in pregnant women and occurrence of adverse events (AEs) during pregnancy (AEDP). Methods: Pregnancy reports from the FDA Adverse Event Reporting System (FAERS) were used to perform a retrospective analysis of AEDP associated with ETV or ADV. Disproportionality analysis estimating the reporting odds ratio (ROR) was conducted to identify the risk signals. A signal was defined as ROR value >2, and lower limit of 95% confidence interval (CI)> 1. Results: A total of 1,286,367 reports involving AEDP were submitted to FAERS by healthcare professionals. Of these, there were 547 cases reporting ETV and 242 cases reporting ADV as primary suspected drugs. We found a moderate or strong signal for increased risk of spontaneous abortion when comparing ETV with tenofovir disoproxil fumarate (TDF) and telbivudine (LdT), with RORs equal to 1.58 (95% CI, 1.09-2.30) and 2.13 (95% CI, 1.04-4.36), respectively. However, when the included reports were limited to indication containing HBV infection, no signals for increased AEDP were detected. Futhermore, a strong signal for increased risk of spontaneous abortion was identified in patients with HBV infection when comparing ETV or ADV with lamivudine (LAM), with RORs of 3.55 (95% CI, 1.54-8.18) and 2.85 (95% CI, 1.15-7.08), respectively. Conclusion: We found a strong signal for increased risk of spontaneous abortion in patients with HBV infection taking ETV or ADV, in comparison with those prescribed with LAM. Moreover, no obvious signal association of human teratogenicity with exposure to ETV or ADV was identified in fetuses during pregnancy. Nevertheless, owing to the limitations of a spontaneous reporting database, which inevitably contains potential biases, there is a pressing need for well-designed comparative safety studies to validate these results in clinical practice.

19.
J Hazard Mater ; 401: 123341, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32653787

ABSTRACT

Halogenated flame retardants (HFRs), including Tetrabromobisphenol A (TBBPA), Tetrabromobisphenol S (TBBPS), and Tetrachlorobisphenol A (TCBPA), are widely applied in the manufacturing industry to improve fire safety and can be detected in pregnant women's serum at nanomolar levels. Thus, it is necessary to pay attention to the three HFR potential development toxicity, which has not been conclusively addressed yet. The liver is the main organ that detoxifies our body; TBBPA exposure may lead to increased liver weight in rodents. Therefore, in this study, we assessed the developmental hepatic toxicity of the three HFRs with a human embryonic stem cell hepatic differentiation-based system and transcriptomics analyses. We mostly evaluated lineage fate alterations and demonstrated the three HFRs may have common disruptive effects on hepatic differentiation, with TCBPA being significantly more potent. More specifically, the three HFRs up-regulated genes related to cell cycle and FGF10 signaling, at late stages of the hepatic differentiation. This indicates the three chemicals promoted hepatoblast proliferation likely via up-regulating the FGF10 cascade. At the same time, we also presented a powerful way to combine in vitro differentiation and in silico transcriptomic analyses, to efficiently evaluate hazardous materials' adverse effects on lineage fate decisions during early development.


Subject(s)
Flame Retardants , Human Embryonic Stem Cells , Polybrominated Biphenyls , Cell Differentiation , Cell Proliferation , Female , Fibroblast Growth Factor 10 , Flame Retardants/toxicity , Humans , Liver , Polybrominated Biphenyls/toxicity , Pregnancy , Signal Transduction , Up-Regulation
20.
J Hazard Mater ; 407: 124387, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33172680

ABSTRACT

The widely used chemical bisphenol A (BPA) has been associated with several health effects. In recent years, many derivatives were developed to replace BPA although without thorough toxicological evaluation. Here, we employed a human embryoid body (EB)-based in vitro global differentiation and hepatic specification models, followed by RNA-seq analyses, to comprehensively study the potential developmental toxicity of six BPA replacements (BPS, BPF, BPZ, BPB, BPE, and BPAF), as compared to BPA. We found that those bisphenols may disrupt lineage commitment and lipid metabolism during early embryonic development. These effects mostly manifested via the dysregulation of HOX and APO family genes. Moreover, among the seven bisphenols analyzed, BPE seemed to have the mildest effects.


Subject(s)
Human Embryonic Stem Cells , Lipid Metabolism , Benzhydryl Compounds/toxicity , Cell Differentiation , Embryonic Development , Humans , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...