Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 202(12): 1666-1677, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32717152

ABSTRACT

Rationale: Host inflammatory responses have been strongly associated with adverse outcomes in critically ill patients, but the biologic underpinnings of such heterogeneous responses have not been defined.Objectives: We examined whether respiratory tract microbiome profiles are associated with host inflammation and clinical outcomes of acute respiratory failure.Methods: We collected oral swabs, endotracheal aspirates (ETAs), and plasma samples from mechanically ventilated patients. We performed 16S ribosomal RNA gene sequencing to characterize upper and lower respiratory tract microbiota and classified patients into host-response subphenotypes on the basis of clinical variables and plasma biomarkers of innate immunity and inflammation. We derived diversity metrics and composition clusters with Dirichlet multinomial models and examined our data for associations with subphenotypes and clinical outcomes.Measurements and Main Results: Oral and ETA microbial communities from 301 mechanically ventilated subjects had substantial heterogeneity in α and ß diversity. Dirichlet multinomial models revealed a cluster with low α diversity and enrichment for pathogens (e.g., high Staphylococcus or Pseudomonadaceae relative abundance) in 35% of ETA samples, associated with a hyperinflammatory subphenotype, worse 30-day survival, and longer time to liberation from mechanical ventilation (adjusted P < 0.05), compared with patients with higher α diversity and relative abundance of typical oral microbiota. Patients with evidence of dysbiosis (low α diversity and low relative abundance of "protective" oral-origin commensal bacteria) in both oral and ETA samples (17%, combined dysbiosis) had significantly worse 30-day survival and longer time to liberation from mechanical ventilation than patients without dysbiosis (55%; adjusted P < 0.05).Conclusions: Respiratory tract dysbiosis may represent an important, modifiable contributor to patient-level heterogeneity in systemic inflammatory responses and clinical outcomes.


Subject(s)
Dysbiosis/etiology , Dysbiosis/mortality , Microbiota/genetics , Respiration, Artificial/adverse effects , Respiration, Artificial/mortality , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Respiratory System/microbiology , Adult , Aged , Critical Illness/therapy , Female , Genetic Variation , Humans , Inflammation/etiology , Inflammation/microbiology , Male
2.
mSphere ; 4(4)2019 07 24.
Article in English | MEDLINE | ID: mdl-31341070

ABSTRACT

The role of the gut microbiome in critical illness is being actively investigated, but the optimal sampling methods for sequencing studies of gut microbiota remain unknown. Stool samples are generally considered the reference standard but are not practical to obtain in the intensive care unit (ICU), and thus, rectal swabs are often used. However, the reliability of rectal swabs for gut microbiome profiling has not been established in the ICU setting. In this study, we compared 16S rRNA gene sequencing results between rectal swab and stool samples collected at three time points from mechanically ventilated critically ill adults. Rectal swabs comprised 89% of the samples collected at the baseline time point, but stool samples became more extensively available at later time points. Significant differences in alpha-diversity and beta-diversity between rectal swabs and stool samples were observed, but these differences were primarily due to baseline samples. Higher relative abundances of members of the Actinobacteria phylum (typically skin microbes) were present in rectal swabs than in stool samples (P = 0.05), a difference that was attenuated over time. The progressively increasing similarity of rectal swabs and stool samples likely resulted from increasing levels of stool coating of the rectal vault and direct soiling of the rectal swabs taken at later time points. Therefore, inferences about the role of the gut microbiome in critical illness should be drawn cautiously and should take into account the type and timing of samples analyzed.IMPORTANCE Rectal swabs have been proposed as potential alternatives to stool samples for gut microbiome profiling in outpatients or healthy adults, but their reliability in assessment of critically ill patients has not been defined. Because stool sampling is not practical and often not feasible in the intensive care unit, we performed a detailed comparison of gut microbial sequencing profiles between rectal swabs and stool samples in a longitudinal cohort of critically ill patients. We identified systematic differences in gut microbial profiles between rectal swabs and stool samples and demonstrated that the timing of the rectal swab sampling had a significant impact on sequencing results. Our methodological findings should provide valuable information for the design and interpretation of future investigations of the role of the gut microbiome in critical illness.


Subject(s)
Bacteria/classification , Feces/microbiology , Gastrointestinal Microbiome , Rectum/microbiology , Aged , Critical Illness , Female , Humans , Intensive Care Units/statistics & numerical data , Longitudinal Studies , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Sequence Analysis, DNA , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL