Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Conserv Biol ; 36(2): e13807, 2022 04.
Article in English | MEDLINE | ID: mdl-34312893

ABSTRACT

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Australia , Body Size , Fisheries , Fishes , Humans
2.
Mar Environ Res ; 173: 105543, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34952373

ABSTRACT

Understanding the connectivity of exploited fish populations is critical to their management under both rapid and long-term environmental change. Patterns of connectivity are unknown for most fishes in the Shark Bay World Heritage Area (Western Australia), a large, shallow embayment in the eastern Indian Ocean, vulnerable to marine heatwaves. The composition of oxygen (δ18O) and carbon (δ13C) stable isotopes in whole otoliths of the recreationally-important reef fish Lethrinus laticaudis did not differ between Shark Bay's two large inner gulfs, separated by the Peron Peninsula. However, significant differences were found between pairs of locations with different salinities over a spatial scale of ∼60 km within each gulf. Misclassification of samples was greatest between locations mostly in different gulfs, but with similar salinities (15-41%), and rare between adjacent locations in the same gulf with different salinities (0-5%). This is influenced by the strong correlation (ρ = 0.93) between δ18O in otoliths and the salinity gradient of the two gulfs, and further supported by a lack of correlation in the similarities of isotope compositions and distances between locations (ρ = 0.16). Fish samples from each of the different locations were composed of multiple year-classes, yet the otolith chemistry distinguished them at a minimum distance of 16 km apart, indicating that small-scale connectivity of L. laticaudis is likely during the majority of their life cycle. Physical barriers to movement of post-settlement individuals (land masses, expansive seagrass and sand) between the small, isolated reefs of Shark Bay may reduce large scale connectivity, which instead would occur mostly by egg and larval dispersal. The probable scale of connectivity of post-settlement L. laticaudis indicates that this major recreational fishing target species may be vulnerable to localised over-exploitation and negative environmental effects on population sources and sinks within this shallow embayment. Maintaining sustainable spawning biomass at scales relevant to the extent of connectivity for such a species in a World Heritage Area is an important management consideration.


Subject(s)
Sharks , Animals , Bays , Ecosystem , Fishes , Humans , Hunting , Poaceae , Western Australia
3.
Commun Biol ; 4(1): 1231, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711927

ABSTRACT

Rising temperatures and extreme climate events are propelling tropical species into temperate marine ecosystems, but not all species can persist. Here, we used the heatwave-driven expatriation of tropical Black Rabbitfish (Siganus fuscescens) to the temperate environments of Western Australia to assess the ecological and evolutionary mechanisms that may entail their persistence. Population genomic assays for this rabbitfish indicated little genetic differentiation between tropical residents and vagrants to temperate environments due to high migration rates, which were likely enhanced by the marine heatwave. DNA metabarcoding revealed a diverse diet for this species based on phytoplankton and algae, as well as an ability to feed on regional resources, including kelp. Irrespective of future climate scenarios, these macroalgae-consuming vagrants may self-recruit in temperate environments and further expand their geographic range by the year 2100. This expansion may compromise the health of the kelp forests that form Australia's Great Southern Reef. Overall, our study demonstrates that projected favourable climate conditions, continued large-scale genetic connectivity between populations, and diet versatility are key for tropical range-shifting fish to establish in temperate ecosystems.


Subject(s)
Animal Distribution , Climate Change , Herbivory , Perciformes/physiology , Animals , Kelp , Oceans and Seas , Tropical Climate , Western Australia
4.
J Fish Biol ; 99(6): 1869-1886, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34431089

ABSTRACT

The yellowspotted rockcod, Epinephelus areolatus, is a small-sized grouper that is widely distributed throughout the Indo-Pacific, where it forms a valuable component of the harvest derived from multispecies fisheries along continental and insular shelves. Samples of E. areolatus were collected from 2012 to 2018 from commercial catches and research surveys in the Kimberley, Pilbara and Gascoyne regions of north-western Australia to improve the understanding of the life history, inherent vulnerability and stock status of this species. Histological analysis of gonads (n = 1889) determined that E. areolatus was a monandric protogynous hermaphrodite. Non-functional spermatogenic crypts were dispersed within the ovaries of 23% of mature functioning females; nonetheless, these crypts were not observed during the immature female phase. The length and age at which 50% of females matured were 266 mm total length (LT ) and 2.7 years, respectively. The spawning period was protracted over 10-12 months of the year with biannual peaks at the start of spring and autumn (i.e., September and March) when the photoperiod was at its mid-range (i.e., 12.1 h). Estimates of the lengths and ages at which 50% of E. areolatus change sex from female to male were very similar (i.e., <5% difference) between the Kimberley and Pilbara regions, i.e., L 50 sc of 364 and 349 mm LT and A 50 sc of 7.9 and 7.3 years, respectively. A maximum age of 19 years was observed in all three regions, but there was significant regional variation in growth. These variations in growth were not correlated with latitude; instead a parabolic relationship was evident, where the smallest mean length-at-age and fastest growth rates (k) occurred in the mid-latitudes of the Pilbara region. In the Kimberley and Pilbara regions, individuals were not fully selected by commercial fish traps until 5-6 years of age, hence, several years after reaching maturity. These life-history characteristics infer a high population productivity, which underpins the sustainable harvest of this species, despite comprising the largest catches of all epinephelids in the multispecies tropical fisheries across north-western Australia.


Subject(s)
Bass , Perciformes , Animals , Female , Male , Reproduction , Sex Determination Processes , Western Australia
5.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Article in English | MEDLINE | ID: mdl-34015863

ABSTRACT

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Australia , Ecosystem , Fisheries , Fishes , Oceans and Seas
6.
Front Microbiol ; 9: 2000, 2018.
Article in English | MEDLINE | ID: mdl-30210475

ABSTRACT

Globally, marine species' distributions are being modified due to rising ocean temperatures. Increasing evidence suggests a circum-global pattern of poleward extensions in the distributions of many tropical herbivorous species, including the ecologically important rabbitfish Siganus fuscescens. Adaptability of a species to such new environments may be heavily influenced by the composition of their gastrointestinal microbe fauna, which is fundamentally important to animal health. Siganus fuscescens thus provides an opportunity to assess the stability of gastrointestinal microbes under varying environmental conditions. The gastrointestinal microbial communities of S. fuscescens were characterized over 2,000 km of Australia's western coast, from tropical to temperate waters, including near its current southern distributional limit. Sequencing of the 16S rRNA gene demonstrated that each population had a distinct hindgut microbial community, and yet, 20 OTUs occurred consistently in all samples. These OTUs were considered the 'core microbiome' and were highly abundant, composing between 31 and 54% of each population. Furthermore, levels of short chain fatty acids, an indicator of microbial fermentation activity, were similar among tropical and temperate locations. These data suggest that flexibility in the hindgut microbiome may play a role in enabling such herbivores to colonize new environments beyond their existing range.

7.
Sci Rep ; 7(1): 8618, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819230

ABSTRACT

Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species' distributions. Following a 2011 'marine heatwave' in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a genome wide set of 14 559 single-nucleotide polymorphisms (SNPs) to identify the likely source population for this recruitment event. Most loci (76%) showed low genetic divergence across the species' range, indicating high levels of gene flow and confirming previous findings using neutral microsatellite markers. However, a small proportion of loci showed strong patterns of differentiation and exhibited patterns of population structure consistent with local adaptation. Clustering analyses based on these outlier loci indicated that recruits at the southern end of C. rubescens' range originated 400 km to the north, at the centre of the species' range, where average temperatures are up to 3 °C warmer. Survival of these recruits may be low because they carry alleles adapted to an environment different to the one they now reside in, but their survival is key to establishing locally adapted populations at and beyond the range edge as water temperatures increase with climate change.


Subject(s)
Adaptation, Physiological/genetics , Fishes/genetics , Gene Flow , Genome/genetics , Genomics/methods , Animals , Fish Proteins/genetics , Fisheries , Fishes/classification , Genetic Drift , Genotype , Geography , Larva/genetics , Polymorphism, Single Nucleotide , Species Specificity , Western Australia
8.
J Acoust Soc Am ; 134(4): 2701-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116408

ABSTRACT

Biological examinations of Glaucosomatid fish species have suggested that they could produce sound via swimbladder vibration, using "sonic" muscles. However, there have been few reported instances of it in the family. West Australian dhufish (Glaucosoma hebraicum) is an iconic teleost, endemic to Western Australia. Dissection of G. hebraicum in this study identified the presence of "sonic" muscle pairs in immature and sexually mature individuals. The muscle tissue originates in the otic region of the skull with its insertion at the anterior of the swimbladder. Recordings of sounds were acquired from two male G. hebraicum, at a range of 1 m, during capture. Calls comprised 1 to 14 swimbladder pulses with spectral peak frequency of 154 ± 45 Hz (n = 67 calls) and 3 dB bandwidth of 110 ± 50 Hz. The mean of all call maximum source levels was 126 dB re 1 µPa at 1 m with the highest level at 137 dB re 1 µPa at 1 m. The confirmation of sound production by G. hebraicum and the acoustic characteristics of those sounds could be used to gain a better understanding of its ecology and, particularly, whether the production of sound is associated with specific behaviors, such as reproduction.


Subject(s)
Fishes/physiology , Vocalization, Animal , Acoustics , Air Sacs/physiology , Animals , Female , Male , Muscle Contraction , Muscles/physiology , Oceans and Seas , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors , Vibration , Western Australia
9.
PLoS One ; 8(3): e59959, 2013.
Article in English | MEDLINE | ID: mdl-23555847

ABSTRACT

Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.


Subject(s)
Ecology/methods , Ecosystem , Fishes/physiology , Animals , Australia , Biodiversity , Geography , Population Dynamics , Temperature , Video Recording
10.
PLoS One ; 7(11): e45973, 2012.
Article in English | MEDLINE | ID: mdl-23209547

ABSTRACT

Age structure data is essential for single species stock assessments but length-frequency data can provide complementary information. In south-western Australia, the majority of these data for exploited species are derived from line caught fish. However, baited remote underwater stereo-video systems (stereo-BRUVS) surveys have also been found to provide accurate length measurements. Given that line fishing tends to be biased towards larger fish, we predicted that, stereo-BRUVS would yield length-frequency data with a smaller mean length and skewed towards smaller fish than that collected by fisheries-independent line fishing. To assess the biases and selectivity of stereo-BRUVS and line fishing we compared the length-frequencies obtained for three commonly fished species, using a novel application of the Kernel Density Estimate (KDE) method and the established Kolmogorov-Smirnov (KS) test. The shape of the length-frequency distribution obtained for the labrid Choerodon rubescens by stereo-BRUVS and line fishing did not differ significantly, but, as predicted, the mean length estimated from stereo-BRUVS was 17% smaller. Contrary to our predictions, the mean length and shape of the length-frequency distribution for the epinephelid Epinephelides armatus did not differ significantly between line fishing and stereo-BRUVS. For the sparid Pagrus auratus, the length frequency distribution derived from the stereo-BRUVS method was bi-modal, while that from line fishing was uni-modal. However, the location of the first modal length class for P. auratus observed by each sampling method was similar. No differences were found between the results of the KS and KDE tests, however, KDE provided a data-driven method for approximating length-frequency data to a probability function and a useful way of describing and testing any differences between length-frequency samples. This study found the overall size selectivity of line fishing and stereo-BRUVS were unexpectedly similar.


Subject(s)
Ecosystem , Fisheries , Fishes , Animals , Models, Theoretical , Population Density , Population Dynamics , South Australia , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...