Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 513
Filter
1.
Prenat Diagn ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138116

ABSTRACT

OBJECTIVE: Prenatal exome sequencing (pES) is now commonly used in clinical practice. It can be used to identifiy an additional diagnosis in around 30% of fetuses with structural defects and normal chromosomal microarray analysis (CMA). However, interpretation remains challenging due to the limited prenatal data for genetic disorders. METHOD: We conducted an ancillary study including fetuses with pathogenic/likely pathogenic variants identified by trio-pES from the "AnDDI-Prenatome" study. The prenatal phenotype of each patient was categorized as typical, uncommon, or unreported based on the comparison of the prenatal findings with documented findings in the literature and public phenotype-genotype databases (ClinVar, HGMD, OMIM, and Decipher). RESULTS: Prenatal phenotypes were typical for 38/56 fetuses (67.9%). For the others, genotype-phenotype associations were challenging due to uncommon prenatal features (absence of recurrent hallmark, rare, or unreported). We report the first prenatal features associated with LINS1 and PGM1 variants. In addition, a double diagnosis was identified in three fetuses. CONCLUSION: Standardizing the description of prenatal features, implementing longitudinal prenatal follow-up, and large-scale collection of prenatal features are essential steps to improving pES data interpretation.

2.
J Neurol ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003427

ABSTRACT

Spastic paraplegia type 3A (SPG3A) is the second most common form of hereditary spastic paraplegia (HSP). This autosomal-dominant-inherited motor disorder is caused by heterozygous variants in the ATL1 gene which usually presents as a pure childhood-onset spastic paraplegia. Affected individuals present muscle weakness and spasticity in the lower limbs, with symptom onset in the first decade of life. Individuals with SPG3A typically present a slow progression and remain ambulatory throughout their life. Here we report three unrelated individuals presenting with very-early-onset (before 7 months) complex, and severe HSP phenotypes (axial hypotonia, spastic quadriplegia, dystonia, seizures and intellectual disability). For 2 of the 3 patients, these phenotypes led to the initial diagnosis of cerebral palsy (CP). These individuals carried novel ATL1 pathogenic variants (a de novo ATL1 missense p.(Lys406Glu), a homozygous frameshift p.(Arg403Glufs*3) and a homozygous missense variant (p.Tyr367His)). The parents carrying the heterozygous frameshift and missense variants were asymptomatic. Through these observations, we increase the knowledge on genotype-phenotype correlations in SPG3A and offer additional proof for possible autosomal recessive forms of SPG3A, while raising awareness on these exceptional phenotypes. Their ability to mimic CP also implies that genetic testing should be considered for patients with atypical forms of CP, given the implications for genetic counseling.

4.
Prenat Diagn ; 44(9): 1115-1118, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923535

ABSTRACT

BACKGROUND: Exome sequencing in prenatal context confronts with pathogenic variants associated with phenotypes that are not detectable prenatally. MATERIALS AND METHODS: A consanguineous couple was referred at 24 weeks of gestation for prenatal genetic investigations after ultrasonography findings including decreased fetal movements, hypoplastic male external genitalia, retrognathia, prefrontal edema, anomalies of the great vessels with pulmonary atresia and dilated tortuous aorta. RESULT: Prenatal trio exome sequencing identified two homozygous likely pathogenic variants, i.e. a missense in EFEMP2 involved in cutis laxa and a nonsense in RAG1 involved in several types of severe combined immunodeficiency. DISCUSSION: The fetal ultrasonographic phenotype was partially compatible with previously reported prenatal presentations secondary to EFEMP2 biallelic variants, but prenatal presentations have never been reported for RAG1 related disorders because the RAG1 phenotype is undetectable during pregnancy. CONCLUSION: Both EFEMP2 and RAG1 variants were disclosed to the couple because the EFEMP2 variant was considered causative for the fetal ultrasonographic phenotype and the RAG1 variant was considered a finding of strong interest for genetic counselling and monitoring of future pregnancies following the American College of Medical Genetics and Genomics recommendations about the discovery of incidental findings in fetal exome sequencing in prenatal diagnosis.


Subject(s)
Exome Sequencing , Homeodomain Proteins , Phenotype , Humans , Female , Pregnancy , Exome Sequencing/methods , Male , Homeodomain Proteins/genetics , Ultrasonography, Prenatal , Adult , Mutation, Missense , Prenatal Diagnosis/methods
5.
J Med Genet ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849204

ABSTRACT

INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.

6.
J Med Genet ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937076

ABSTRACT

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

7.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884529

ABSTRACT

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

9.
Eur J Hum Genet ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802530

ABSTRACT

Generation and subsequently accessibility of secondary findings (SF) in diagnostic practice is a subject of debate around the world and particularly in Europe. The French FIND study has been set up to assess patient/parent expectations regarding SF from exome sequencing (ES) and to collect their real-life experience until 1 year after the delivery of results. 340 patients who had ES for undiagnosed developmental disorders were included in this multicenter mixed study (quantitative N = 340; qualitative N = 26). Three groups of actionable SF were rendered: predisposition to late-onset actionable diseases; genetic counseling; pharmacogenomics. Participants expressed strong interest in obtaining SF and a high satisfaction level when a SF is reported. The medical actionability of the SF reinforced parents' sense of taking action for their child and was seen as an opportunity. While we observed no serious psychological concerns, we showed that these results could have psychological consequences, in particular for late-onset actionable diseases SF, within families already dealing with rare diseases. This study shows that participants remain in favor of accessing SF despite the potential psychological, care, and lifestyle impacts, which are difficult to anticipate. The establishment of a management protocol, including the support of a multidisciplinary team, would be necessary if national policy allows the reporting of these data.

10.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38787418

ABSTRACT

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Subject(s)
DNA Methylation , Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Male , Female , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Child
11.
Eur J Hum Genet ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755315

ABSTRACT

Timely diagnosis is one of the most serious challenges faced by people living with a rare disease (PLWRD), and this study estimates that in Europe, the average total diagnosis time (TDT) is close to 5 years. We investigated the duration of the TDT for PLWRD in Europe, the difficulties associated with their diagnosis odyssey and the main determinants of diagnosis delays for all rare diseases (RD). We conducted a survey of PLWRD and their families using Rare Barometer, the survey initiative of EURORDIS-Rare Diseases Europe. In geographical Europe, we surveyed 6507 people living with 1675 RD in 41 countries. We then performed a descriptive analysis and ordinal logistic regressions to identify the main determinants of diagnosis delays. Average TDT is 4.7 years. 56% of respondents were diagnosed more than 6 months after a first medical contact. The main determinants of diagnosis delays are symptom onset before 30 years of age, especially during childhood (OR = 3.11; 95% CI: 2.4-4.0) and adolescence (OR = 4.79; 95% CI: 3.7-6.2), being a woman (OR = 1.22; 95% CI:1.1-1.4), living in Northern Europe (OR = 2.15; 95% CI:1.8-2.6) or Western Europe (OR = 1.96; 95% CI:1.6-2.3), the number of healthcare professionals consulted (OR = 5.15; 95% CI:4.1-6.4), misdiagnosis (OR = 2.48; 95% CI:2.1-2.9), referral to a centre of expertise (OR = 1.17; 95% CI:1.0-1.3), unmet needs for psychological support (OR = 1.34; 95% CI:1.2-1.5) and financial support (OR = 1.16; 95% CI:1.0-1.3), having a genetic disease (OR = 1.33; 95% CI:1.1-1.5) and a family history of an RD (OR = 1.36; 95% CI:1.1-1.6). These determinants can inform policies and actions to improve access to diagnosis for all PLWRD.

13.
HGG Adv ; 5(3): 100289, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38571311

ABSTRACT

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.


Subject(s)
DNA Methylation , Hyperventilation , Intellectual Disability , Transcription Factor 4 , Humans , Transcription Factor 4/genetics , Hyperventilation/genetics , Hyperventilation/diagnosis , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Female , Male , Child , Facies , Adolescent , Epigenomics/methods , Epigenesis, Genetic , Hyperkinesis/genetics , Child, Preschool , Adult , Young Adult
16.
Genet Med ; 26(7): 101126, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38529886

ABSTRACT

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.


Subject(s)
Alleles , Holoprosencephaly , Phenotype , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Anodontia , Cleft Lip/genetics , Cleft Lip/pathology , Cleft Palate/genetics , Cleft Palate/pathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Heterozygote , Holoprosencephaly/genetics , Holoprosencephaly/pathology , Homozygote , Incisor/abnormalities , Membrane Proteins/genetics , Mutation, Missense/genetics
17.
Genet Med ; 26(6): 101119, 2024 06.
Article in English | MEDLINE | ID: mdl-38465576

ABSTRACT

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.


Subject(s)
Mutation, Missense , Neurodevelopmental Disorders , Ubiquitin-Protein Ligases , Humans , Mutation, Missense/genetics , Female , Mice , Male , Animals , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Ubiquitin-Protein Ligases/genetics , Child , Child, Preschool , Phenotype , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Infant
18.
Am J Med Genet B Neuropsychiatr Genet ; 195(6): e32970, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38459409

ABSTRACT

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.


Subject(s)
Forkhead Transcription Factors , Intellectual Disability , Nerve Tissue Proteins , Phenotype , Rett Syndrome , Humans , Forkhead Transcription Factors/genetics , Rett Syndrome/genetics , Nerve Tissue Proteins/genetics , Female , Male , Child , Child, Preschool , Intellectual Disability/genetics , Language Development , Genetic Association Studies/methods , Mutation, Missense/genetics , Developmental Disabilities/genetics , Infant , Adolescent , High-Throughput Nucleotide Sequencing/methods , Haploinsufficiency/genetics
19.
Eur J Med Genet ; 69: 104932, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453051

ABSTRACT

PURPOSE: Incomplete penetrance is observed for most monogenic diseases. However, for neurodevelopmental disorders, the interpretation of single and multi-nucleotide variants (SNV/MNVs) is usually based on the paradigm of complete penetrance. METHOD: From 2020 to 2022, we proposed a collaboration study with the French molecular diagnosis for intellectual disability network. The aim was to recruit families for whom the index case, diagnosed with a neurodevelopmental disorder, was carrying a pathogenic or likely pathogenic variant for an OMIM morbid gene and inherited from an asymptomatic parent. Grandparents were analyzed when available for segregation study. RESULTS: We identified 12 patients affected by a monogenic neurodevelopmental disorder caused by likely pathogenic or pathogenic variant (SNV/MNV) inherited from an asymptomatic parent. These genes were usually associated with de novo variants. The patients carried different variants (1 splice-site variant, 4 nonsense and 7 frameshift) in 11 genes: CAMTA1, MBD5, KMT2C, KMT2E, ZMIZ1, MN1, NDUFB11, CUL3, MED13, ARID2 and RERE. Grandparents have been tested in 6 families, and each time the variant was confirmed de novo in the healthy carrier parent. CONCLUSION: Incomplete penetrance for SNV and MNV in neurodevelopmental disorders might be more frequent than previously thought. This point is crucial to consider for interpretation of variants, family investigation, genetic counseling, and prenatal diagnosis. Molecular mechanisms underlying this incomplete penetrance still need to be identified.


Subject(s)
Neurodevelopmental Disorders , Pedigree , Penetrance , Humans , Female , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Child , Child, Preschool , Adult , Adolescent , Mutation , Infant
20.
Eur J Hum Genet ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355961

ABSTRACT

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

SELECTION OF CITATIONS
SEARCH DETAIL