Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(19): 20658-20669, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764666

ABSTRACT

The current energy system is based largely on fossil fuels that emit carbon dioxide (CO2) and contribute to global climate change. Global energy demand is expected to increase, with growth approximately doubled by the year 2050 and tripled by the end of the century. Therefore, research and development on emissions management and carbon cycle solutions that meet energy sustainability is critical to reduce the effects of global warming. The key point of this literature review is the selection of suitable materials for carbon capture. The selection is based on the consideration that the CO2 reduction properties are influenced by the type of material/composite that is being used, the preparation, and the possible characterization method. This Review covers graphene-based materials and their composites as appropriate materials for reducing CO2 and their performance assessment through experiments and theoretical analysis. It is very important to improve the efficiency performance of materials and its scalability. Recently, graphene has become a widely used material for environmental applications, one of which shows good performance in reducing CO2 concentration. To separate CO2, graphene has been developed and is now being showcased and reviewed in this study. Given the measuring technique used, this Review is intended to be a valuable resource for individuals researching CO2 separation employing graphene material in combination with other materials.

2.
Sensors (Basel) ; 24(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257587

ABSTRACT

Traditional aquaculture systems appear challenged by the high levels of total ammoniacal nitrogen (TAN) produced, which can harm aquatic life. As demand for global fish production continues to increase, farmers should adopt recirculating aquaculture systems (RAS) equipped with biofilters to improve the water quality of the culture. The biofilter plays a crucial role in ammonia removal. Therefore, a biofilter such as a moving bed biofilm reactor (MBBR) biofilter is usually used in the RAS to reduce ammonia. However, the disadvantage of biofilter operation is that it requires an automatic system with a water quality monitoring and control system to ensure optimal performance. Therefore, this study focuses on developing an Internet of Things (IoT) system to monitor and control water quality to achieve optimal biofilm performance in laboratory-scale MBBR. From 35 days into the experiment, water quality was maintained by an aerator's on/off control to provide oxygen levels suitable for the aquatic environment while monitoring the pH, temperature, and total dissolved solids (TDS). When the amount of dissolved oxygen (DO) in the MBBR was optimal, the highest TAN removal efficiency was 50%, with the biofilm thickness reaching 119.88 µm. The forthcoming applications of the IoT water quality monitoring and control system in MBBR enable farmers to set up a system in RAS that can perform real-time measurements, alerts, and adjustments of critical water quality parameters such as TAN levels.


Subject(s)
Ammonia , Internet of Things , Animals , Biofilms , Bioreactors , Water Quality , Oxygen
3.
Langmuir ; 39(39): 13807-13819, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37733972

ABSTRACT

In this study, magnetic Fe3O4 nanoparticles (NPs) were dispersed uniformly by varying the thickness of the SiO2 coating, and their electronic and magnetic properties were investigated. X-ray diffraction confirmed the structural configuration of monophase inverse-spinel Fe3O4 NPs in nanometer size. Scanning electron microscopy revealed the formation of proper nonporous crystallite particles with a clear core-shell structure with silica on the surface of Fe3O4 NPs. The absorption mechanism studied through the zeta potential indicates that SiO2-coated Fe3O4 nanocomposites (SiO2@Fe3O4 NCs) possess electrostatic interactions to control their agglomeration in stabilizing suspensions by providing a protective shield of amorphous SiO2 on the oxide surface. High-resolution transmission electron microscopy images demonstrate a spherical morphology having an average grain diameter of ∼11-17 nm with increasing thickness of SiO2 coating with the addition of a quantitative presence and proportion of elements determined through elemental mapping and electron energy loss spectroscopy studies. Synchrotron-based element-specific soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) techniques have been involved in the bulk-sensitive total fluorescence yield mode to understand the origin of magnetization in SiO2@Fe3O4 NCs. The magnetization hysteresis of Fe3O4 was determined by XMCD. At room temperature, the magnetic coercivity (Hc) is as high as 1 T, which is about 2 times more than the value of the thin film and about 5 times more pronounced than that of NPs. For noninteracting single-domain NPs with the Hc spread from 1 to 3 T, the Stoner-Wohlfarth model provided an intriguing explanation for the hysteresis curve. These curves determine the different components of Fe oxides present in the samples that derive the remnant magnetization involved in each oxidation state of Fe and clarify which Fe component is responsible for the resultant magnetism and magnetocrystalline anisotropy based on noninteracting single-domain particles.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35159659

ABSTRACT

Recently, sophisticated technologies are applied to design a certain surface nature that can have superhydrophobic properties. Thus, a simple spray technique was introduced to prepare a superhydrophobic surface using rGO with Ni-S system (rGO-Ni) by using NiSO4 catalyst under microwave irradiation at various reaction times of 5, 10, 20, and 30 min. The GO reduction was conducted at a fixed Ar/H2 ratio, a flow rate of 0.4 L/min, microwave power of 720 W, and a mass of 0.5 g. GO powder with nickel sulfate catalyst was treated under Ar/H2 (4:1) mixture for GO reduction, where Ar and H2 were expected to prevent the rebinding of oxygen released from GO. The result of XRD and Raman measurement confirms that rGO-Ni prepared at reaction time 20 min exhibit the highest reduction of GO and the presence of various Ni-S crystal structures such as NiS, NiS2, Ni3S2, and Ni3S4 due to decomposition of NiSO4. The rGO-Ni coating performance shows superhydrophobic nature with a contact angle of 150.1°. The AFM images show that the addition of nickel to rGO produces a quasi-periodic spike structure, which increases the superhydrophobicity of the r-GO-Ni coated glass with a contact angle of 152.6°. It is emphasized that the proposed simple spray coating using rGO-Ni provides a more favorable option for industry application in obtaining superhydrophobic surfaces.

5.
Materials (Basel) ; 14(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34442948

ABSTRACT

Appropriately engineered CaCO3 vaterite has interesting properties such as biodegradability, large surface area, and unique physical and chemical properties that allow a variety of uses in medical applications, mainly in dental material as the scaffold. In this paper, we report the synthesis of vaterite from Ca(NO3)2·4H2O without porogen to obtain a highly pure and porous microsphere for raw material of calcium phosphate as the scaffold in our future development. CaCO3 properties were investigated at two different temperatures (20 and 27 °C) and stirring speeds (800 and 1000 rpm) and at various reaction times (5, 10, 15, 30, and 60 min). The as-prepared porous CaCO3 powders were characterized by FTIR, XRD, SEM, TEM, and BET methods. The results showed that vaterite with purity 95.3%, crystallite size 23.91 nm, and porous microsphere with lowest pore diameter 3.5578 nm was obtained at reaction time 30 min, temperature reaction 20 °C, and stirring speed 800 rpm. It was emphasized that a more spherical microsphere with a smaller size and nanostructure contained multiple primary nanoparticles received at a lower stirring speed (800 rpm) at the reaction time of 30 min. One of the outstanding results of this study is the formation of the porous vaterite microsphere with a pore size of ~3.55 nm without any additional porogen or template by using a simple mixing method.

SELECTION OF CITATIONS
SEARCH DETAIL
...