Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Hum Genet ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987656

ABSTRACT

The clinical diagnosis of patients with multisystem involvement including a pronounced neurologic damage is challenging. High-throughput sequencing methods remains crucial to provide an accurate diagnosis. In this study, we reported a Tunisian patient manifesting hypotonia and global developmental delay with visual and skin abnormalities. Exome sequencing was conducted followed by segregation analysis and, subsequently additional investigations. In silico analysis of non-synonymous variants (nsSNPs) described in COG5 in conserved positions was made. Results revealed a homozygous missense variant c.298 C > T (p.Leu100Phe) in the COG5 inherited from both parents. This variant altered both protein solubility and stability, in addition to a putative disruption of the COG5-COG7 interaction. This disruption has been confirmed using patient-derived cells in vitro in a COG5 co-immuno-precipitation, where interaction with binding partner COG7 was abrogated. Hence, we established the COG5-CDG diagnosis. Clinically, the patient shared common features with the already described cases with the report of the ichtyosis as a new manifestation. Conversely, the CADD scoring revealed 19 putatively pathogenic nsSNPs (Minor Allele Frequency MAF < 0.001, CADD > 30), 11 of which had a significant impact on the solubility and/or stability of COG5. These properties seem to be disrupted by six of the seven missense COG5-CDG variants. In conclusion, our study expands the genetic and phenotypic spectrum of COG5-CDG disease and highlight the utility of the next generation sequencing as a powerful tool in accurate diagnosis. Our results shed light on a likely molecular mechanism underlying the pathogenic effect of missense COG5 variants, which is the alteration of COG5 stability and solubility.

2.
Gene ; 914: 148388, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38499212

ABSTRACT

BACKGROUND: Congenital scoliosis (CS) is a spinal disorder caused by genetic-congenital vertebral malformations and may be associated with other congenital defects or may occur alone. It is genetically heterogeneous and numerous genes contributing to this disease have been identified. In addition, CS has a wide range of phenotypic and genotypic variability, which has been explained by the intervention of genetic factors like modifiers and environment genes. The aim of the present study was to determine the possible cause of CS in a Tunisian patient and to examine the association between mtDNA mutations and mtDNA content and CS. METHODS: Here we performed Whole-Exome Sequencing (WES) in a patient presenting clinical features suggestive of severe congenital scoliosis syndrome. Direct sequencing of the whole mitochondrial DNA (mtDNA) was also performed in addition to copy number quantification in the blood of the indexed case. In silico prediction tools, 3D modeling and molecular docking approaches were used. RESULTS: The WES revealed the homozygous missense mutation c.512A > G (p.H171R) in the TBXT gene. Bioinformatic analysis demonstrated that the p.H171R variant was highly deleterious and caused the TBXT structure instability. Molecular docking revealed that the p.H171R mutation disrupted the monomer stability which seemed to be crucial for maintaining the stability of the homodimer and consequently to the destabilization of the homodimer-DNA complex. On the other hand, we hypothesized that mtDNA can be a modifier factor, so, the screening of the whole mtDNA showed a novel heteroplasmic m.10150T > A (p.M31K) variation in the MT-ND3 gene. Further, qPCR analyses of the patient's blood excluded mtDNA depletion. Bioinformatic investigation revealed that the p.M31K mutation in the ND3 protein was highly deleterious and may cause the ND3 protein structure destabilization and could disturb the interaction between complex I subunits. CONCLUSION: We described the possible role of mtDNA genetics on the pathogenesis of congenital scoliosis by hypothesizing that the presence of the homozygous variant in TBXT accounts for the CS phenotype in our patient and the MT-ND3 gene may act as a modifier gene.


Subject(s)
DNA, Mitochondrial , Exome Sequencing , Phenotype , Scoliosis , Humans , Scoliosis/genetics , Scoliosis/congenital , DNA, Mitochondrial/genetics , Exome Sequencing/methods , Female , Genes, Mitochondrial , Mutation, Missense , Male , Molecular Docking Simulation , Mutation , Child
3.
J Hum Genet ; 69(7): 291-299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467738

ABSTRACT

Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.


Subject(s)
Intellectual Disability , Molecular Docking Simulation , Neurodevelopmental Disorders , Phenotype , Child , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Exome Sequencing , Intellectual Disability/genetics , Intellectual Disability/pathology , Intercellular Signaling Peptides and Proteins , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/chemistry , Models, Molecular , Mutation , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Siblings
4.
Metab Brain Dis ; 39(4): 611-623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38363494

ABSTRACT

Short-chain enoyl-CoA hydratase deficiency (ECHS1D) is a rare congenital metabolic disorder that follows an autosomal recessive inheritance pattern. It is caused by mutations in the ECHS1 gene, which encodes a mitochondrial enzyme involved in the second step of mitochondrial ß-oxidation of fatty acids. The main characteristics of the disease are severe developmental delay, regression, seizures, neurodegeneration, high blood lactate, and a brain MRI pattern consistent with Leigh syndrome. Here, we report three patients belonging to a consanguineous family who presented with mitochondrial encephalomyopathy. Whole-exome sequencing revealed a new homozygous mutation c.619G > A (p.Gly207Ser) at the last nucleotide position in exon 5 of the ECHS1 gene. Experimental analysis showed that normal ECHS1 pre-mRNA splicing occurred in all patients compared to controls. Furthermore, three-dimensional models of wild-type and mutant echs1 proteins revealed changes in catalytic site interactions, conformational changes, and intramolecular interactions, potentially disrupting echs1 protein trimerization and affecting its function. Additionally, the quantification of mtDNA copy number variation in blood leukocytes showed severe mtDNA depletion in all probands.


Subject(s)
DNA, Mitochondrial , Enoyl-CoA Hydratase , Child , Child, Preschool , Humans , Male , Computer Simulation , Consanguinity , DNA, Mitochondrial/genetics , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/deficiency , Mutation/genetics , Pedigree
5.
Ann Hum Genet ; 88(3): 194-211, 2024 May.
Article in English | MEDLINE | ID: mdl-38108658

ABSTRACT

Many inherited conditions cause hepatocellular cholestasis in infancy, including progressive familial intrahepatic cholestasis (PFIC), a heterogeneous group of diseases with highly overlapping symptoms. In our study, six unrelated Tunisian infants with PFIC suspicion were the subject of a panel-target sequencing followed by an exhaustive bioinformatic and modeling investigations. Results revealed five disease-causative variants including known ones: (the p.Asp482Gly and p.Tyr354 * in the ABCB11 gene and the p.Arg446 * in the ABCC2 gene), a novel p.Ala98Cys variant in the ATP-binding cassette subfamily G member 5 (ABCG5) gene and a first homozygous description of the p.Gln312His in the ABCB11 gene. The p.Gln312His disrupts the interaction pattern of the bile salt export pump as well as the flexibility of the second intracellular loop domain harboring this residue. As for the p.Ala98Cys, it modulates both the interactions within the first nucleotide-binding domain of the bile transporter and its accessibility. Two additional potentially modifier variants in cholestasis-associated genes were retained based on their pathogenicity (p.Gly758Val in the ABCC2 gene) and functionality (p.Asp19His in the ABCG8 gene). Molecular findings allowed a PFIC2 diagnosis in five patients and an unexpected diagnosis of sisterolemia in one case. The absence of genotype/phenotype correlation suggests the implication of environmental and epigenetic factors as well as modifier variants involved directly or indirectly in the bile composition, which could explain the cholestasis phenotypic variability.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Infant , Humans , Infant, Newborn , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP-Binding Cassette Transporters/genetics , Cholestasis, Intrahepatic/diagnosis , Cholestasis, Intrahepatic/genetics , Cholestasis/genetics , Genetic Association Studies , Mutation , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Lipoproteins/genetics
6.
Genet. mol. biol ; 33(1): 190-197, 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-566129

ABSTRACT

In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA) and SGCG (c.*102A/C) genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c.*102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression.

SELECTION OF CITATIONS
SEARCH DETAIL