Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Histochem Cell Biol ; 155(4): 451-462, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33404704

ABSTRACT

Chagas disease is caused by the parasite, Trypanosoma cruzi that causes chronic cardiac and digestive dysfunction. Megacolon, an irreversible dilation of the left colon, is the main feature of the gastrointestinal form of Chagas disease. Patients have severe constipation, a consequence of enteric neuron degeneration associated with chronic inflammation. Dysmotility, infection, neuronal loss and a chronic exacerbated inflammation, all observed in Chagas disease, can affect enteroendocrine cells (EEC) expression, which in turn, could influence the inflammatory process. In this study, we investigated the distribution and chemical coding of EEC in the dilated and non-dilated portion of T. cruzi-induced megacolon and in non-infected individuals (control colon). Using immunohistochemistry, EECs were identified by applying antibodies to chromogranin A (CgA), glucagon-like peptide 1 (GLP-1), 5-hydroxytryptamine (5-HT), peptide YY (PYY) and somatostatin (SST). Greater numbers of EEC expressing GLP-1 and SST occurred in the dilated portion compared to the non-dilated portion of the same patients with Chagas disease and in control colon, but numbers of 5-HT and PYY EEC were not significantly different. However, it was noticeable that EEC in which 5-HT and PYY were co-expressed were common in control colon, but were rare in the non-dilated and absent in the dilated portion of chagasic megacolon. An increase in the number of CgA immunoreactive EEC in chagasic patients reflected the increases in EEC numbers summarised above. Our data suggests that the denervation and associated chronic inflammation are accompanied by changes in the number and coding of EEC that could contribute to disorders of motility and defence in the chagasic megacolon.


Subject(s)
Chagas Disease/pathology , Enteroendocrine Cells/pathology , Megacolon/pathology , Trypanosoma cruzi/isolation & purification , Chagas Disease/immunology , Chagas Disease/parasitology , Female , Humans , Immunohistochemistry , Inflammation/immunology , Inflammation/parasitology , Inflammation/pathology , Male , Megacolon/immunology , Megacolon/parasitology
3.
Cell Tissue Res ; 378(3): 457-469, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31309318

ABSTRACT

Although the pig is an accepted model species for human digestive physiology, no previous study of the pig gastric mucosa and gastric enteroendocrine cells has investigated the parallels between pig and human. In this study, we have investigated markers for each of the classes of gastric endocrine cells, gastrin, ghrelin, somatostatin, 5-hydroxytryptamine, histidine decarboxylase, and PYY cells in pig stomach. The lining of the proximal stomach consisted of a collar of stratified squamous epithelium surrounded by gastric cardiac glands in the fundus. This differs considerably from human that has only a narrow band of cardiac glands at its entrance, surrounded by a fundic mucosa consisting of oxyntic glands. However, the linings of the corpus and antrum are similar in pig and human. Likewise, the endocrine cell types are similar and similarly distributed in the two species. As in human, gastrin cells were almost exclusively in the antrum, ghrelin cells were most abundant in the oxyntic mucosa and PYY cells were rare. In the pig, 70% of enterochromaffin-like (ECL) cells in the antrum and 95% in the fundus contained 5-hydroxytryptamine (5-HT), higher proportions than in human. Unlike the enteroendocrine of the small intestine, most gastric enteroendocrine cells (EEC) did not contain colocalised hormones. This is similar to human and other species. We conclude that the pig stomach has substantial similarity to human, except that the pig has a protective lining at its entrance that may reflect the difference between a pig diet with hard abrasive components and the soft foods consumed by humans.


Subject(s)
Enteroendocrine Cells , Gastric Mucosa , Peptide Hormones/metabolism , Stomach , Swine , Animals , Enteroendocrine Cells/cytology , Enteroendocrine Cells/metabolism , Gastric Mucosa/cytology , Gastric Mucosa/metabolism , Histidine Decarboxylase/metabolism , Humans , Serotonin/metabolism , Stomach/anatomy & histology , Stomach/cytology , Swine/anatomy & histology , Swine/metabolism
4.
Cell Tissue Res ; 376(1): 37-49, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30467709

ABSTRACT

Gastric endocrine cell hormones contribute to the control of the stomach and to signalling to the brain. In other gut regions, enteroendocrine cells (EECs) exhibit extensive patterns of colocalisation of hormones. In the current study, we characterise EECs in the human gastric fundus and corpus. We utilise immunohistochemistry to investigate EECs with antibodies to ghrelin, serotonin (5-HT), somatostatin, peptide YY (PYY), glucagon-like peptide 1, calbindin, gastrin and pancreastatin, the latter as a marker of enterochromaffin-like (ECL) cells. EECs were mainly located in regions of the gastric glands populated by parietal cells. Gastrin cells were absent and PYY cells were very rare. Except for about 25% of 5-HT cells being a subpopulation of ECL cells marked by pancreastatin, colocalisation of hormones in gastric EECs was infrequent. Ghrelin cells were distributed throughout the fundus and corpus; most were basally located in the glands, often very close to parietal cells and were closed cells i.e., not in contact with the lumen. A small proportion had long processes located close to the base of the mucosal epithelium. The 5-HT cells were of at least three types: small, round, closed cells; cells with multiple, often very long, processes; and a subgroup of ECL cells. Processes were in contact with their surrounding cells, including parietal cells. Mast cells had very weak or no 5-HT immunoreactivity. Somatostatin cells were a closed type with long processes. In conclusion, four major chemically defined EEC types occurred in the human oxyntic mucosa. Within each group were cells with distinct morphologies and relationships to other mucosal cells.


Subject(s)
Enteroendocrine Cells , Gastric Fundus , Gastrointestinal Hormones/analysis , Enteroendocrine Cells/chemistry , Enteroendocrine Cells/cytology , Female , Gastric Fundus/cytology , Gastric Fundus/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Obesity/surgery
5.
Cell Tissue Res ; 369(2): 245-253, 2017 08.
Article in English | MEDLINE | ID: mdl-28413860

ABSTRACT

There is general consensus that enteroendocrine cells, EEC, containing the enteric hormone cholecystokinin (CCK) are confined to the small intestine and predominate in the duodenum and jejunum. Contrary to this, EEC that express the gene for CCK have been isolated from the large intestine of the mouse and there is evidence for EEC that contain CCK-like immunoreactivity in the mouse colon. However, the human and rat colons do not contain CCK cells. In the current study, we use immunohistochemistry to investigate CCK peptide presence in endocrine cells, PCR to identify cck transcripts and chromatography to identify CCK peptide forms in the mouse small and large intestine. The colocalisation of CCK and 5-HT, hormones that have been hypothesised to derive from cells of different lineages, was also investigated. CCK immunoreactivity was found in EEC throughout the mouse small and large intestine but positive cells were rare in the rectum. Immunoreactive EEC were as common in the caecum and proximal colon as they were in the duodenum and jejunum. CCK gene transcripts were found in the mucosa throughout the intestine but mRNA for gastrin, a hormone that can bind some anti-CCK antibodies, was only found in the stomach and duodenum. Characterisation of CCK peptides of the colon by extraction, chromatographic separation and radioimmunoassay revealed bioactive amidated and sulphated forms, including CCK-8 and CCK-33. Moreover, CCK-containing EEC in the large intestine bound antibodies that target the biologically active sulfated form. Colocalisation of CCK and 5-HT occurred in a proportion of EEC throughout the small intestine and in the caecum but these hormones were not colocalised in the colon, where there was CCK and PYY colocalisation. It is concluded that authentic, biologically active, CCK occurs in EEC of the mouse large intestine.


Subject(s)
Cholecystokinin/metabolism , Enteroendocrine Cells/metabolism , Intestine, Large/cytology , Intestine, Small/cytology , Animals , Cell Count , Cholecystokinin/genetics , Enteroendocrine Cells/cytology , Gastrins/genetics , Gastrins/metabolism , Male , Mice, Inbred C57BL , Peptide YY/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serotonin/metabolism
6.
Cell Tissue Res ; 367(2): 161-168, 2017 02.
Article in English | MEDLINE | ID: mdl-27844204

ABSTRACT

Recent studies have shown that patterns of colocalisation of hormones in enteroendocrine cells are more complex than previously appreciated and that the patterns differ substantially between species. In this study, the human sigmoid colon is investigated by immunohistochemistry for the presence of gastrointestinal hormones and their colocalisation. The segments of colon were distant from the pathology that led to colectomy and appeared structurally normal. Only four hormones, 5-hydroxytryptamine (5-HT), glucagon-like peptide 1 (GLP-1), peptide YY (PYY) and somatostatin, were common in enteroendocrine cells of the human colon. Cholecystokinin, present in the colon of some species, was absent, as were glucose-dependent insulinotropic peptide, ghrelin and motilin. Neurotensin cells were extremely rare. The most numerous cells were 5-HT cells, some of which also contained PYY or somatostatin and very rarely GLP-1. Almost all GLP-1 cells contained PYY. It is concluded that enteroendocrine cells of the human colon, like those of other regions and species, exhibit overlapping patterns of hormone colocalisation and that the hormones and their patterns of expression differ between human and other species.


Subject(s)
Colon/cytology , Enteroendocrine Cells/cytology , Cell Count , Hormones/metabolism , Humans , Jejunum/cytology , Staining and Labeling
7.
Cell Tissue Res ; 364(3): 489-497, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26803512

ABSTRACT

The majority of 5-HT (serotonin) in the body is contained in enteroendocrine cells of the gastrointestinal mucosa. From the time of their discovery over 80 years ago, the 5-HT-containing cells have been regarded as a class of cell that is distinct from enteroendocrine cells that contain peptide hormones. However, recent studies have cast doubt on the concept of there being distinct classes of enteroendocrine cells, each containing a single hormone or occasionally more than one hormone. Instead, data are rapidly accumulating that there are complex patterns of colocalisation of hormones that identify multiple subclasses of enteroendocrine cells. In the present work, multiple labelling immunohistochemistry is used to investigate patterns of colocalisation of 5-HT with enteric peptide hormones. Over 95 % of 5-HT cells in the duodenum also contained cholecystokinin and about 40 % of them also contained secretin. In the jejunum, about 75 % of 5-HT cells contained cholecystokinin but not secretin and 25 % contained 5-HT plus both cholecystokinin and secretin. Small proportions of 5-HT cells contained gastrin or somatostatin in the stomach, PYY or GLP-1 in the small intestine and GLP-1 or somatostatin in the large intestine. Rare or very rare 5-HT cells contained ghrelin (stomach), neurotensin (small and large intestines), somatostatin (small intestine) and PYY (in the large intestine). It is concluded that 5-HT-containing enteroendocrine cells are heterogeneous in their chemical coding and by implication in their functions.


Subject(s)
Enteroendocrine Cells/metabolism , Gastrointestinal Tract/cytology , Serotonin/metabolism , Animals , Cholecystokinin/metabolism , Gastric Mucosa/metabolism , Gastrins/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Immunohistochemistry , Mice, Inbred C57BL , Neurotensin/metabolism , Peptide YY/metabolism , Secretin/metabolism , Somatostatin/metabolism
8.
J Ophthalmol ; 2015: 430596, 2015.
Article in English | MEDLINE | ID: mdl-26664738

ABSTRACT

Retinopathy is a threat to the eyesight, and glaucoma and diabetes are the main causes for the damage of retinal cells. Recent insights pointed out a common pathogenetic pathway for both disorders, based on chronic inflammation. Palmitoylethanolamide (PEA) is an endogenous cell protective lipid. Since its discovery in 1957 as a biologically active component in foods and in many living organisms, around 500 scientific papers have been published on PEA's anti-inflammatory and neuron-protective properties. PEA has been evaluated for glaucoma, diabetic retinopathy, and uveitis, pathological states based on chronic inflammation, respiratory disorders, and various pain syndromes in a number of clinical trials since the 70s of 20th century. PEA is available as a food supplement (PeaPure) and as diet food for medical purposes in Italy (Normast, PeaVera, and Visimast). These products are notified in Italy for the nutritional support in glaucoma and neuroinflammation. PEA has been tested in at least 9 double blind placebo controlled studies, among which two studies were in glaucoma, and found to be safe and effective up to 1.8 g/day, with excellent tolerability. PEA therefore holds a promise in the treatment of a number of retinopathies. We discuss PEA as a putative anti-inflammatory and retinoprotectant compound in the treatment of retinopathies, especially related to glaucoma and diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...