Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026710

ABSTRACT

BACKGROUND: The increasing prevalence of atrial fibrillation (AF) and chronic kidney diseases highlights the need for a deeper comprehension of the molecular mechanisms linking them. Mutations in PKD1, the gene encoding Polycystin-1 (PKD1 or PC1), account for 85% of autosomal dominant polycystic kidney disease (ADPKD) cases. This disease often includes cardiac complications such as AF. In cardiomyocytes, PC1 deletion reduces hypertrophic response to pressure overload but promotes baseline ventricular dysfunction, while deletion in fibroblasts ameliorates post-myocardial infarction fibrosis. Despite its known cardiac impact, the role of PC1 in atrial cardiomyocytes and arrhythmias is less understood. Here, we sought to investigate the role of PC1 in AF. METHODS: We used intracardiac programmed stimulation and optical mapping to evaluate AF inducibility in two mouse models, Pkd1 R3277C, which recapitulates human ADPKD progression, and cardiomyocyte-specific Pkd1 deletion, and their respective controls. Isolated adult mouse atrial cardiomyocytes, human iPSC-derived atrial cardiomyocytes (hiPSC-aCM), and HL-1 cells served as in vitro cellular models. Molecular mechanisms were evaluated using optical mapping and molecular and biochemical approaches. RESULTS: Loss-of-function PC1 mutations significantly increased AF susceptibility in vivo and facilitated local reentry in ex vivo left atrial appendages. Comprehensive in vitro experiments supported a direct effect of PC1 in atrial cardiomyocytes. PC1-deficient monolayers exhibited increased arrhythmic events, escalating into reentrant spiral waves post-tachypacing. Transcriptomics analysis revealed PC1-dependent regulation of DNA repair, with PC1 deficiency leading to increased DNA damage under stress. PARP1 inhibitors or nicotinamide riboside, which counteract DNA damage-related metabolic consequences, reduced in vitro arrhythmias PC1-deficient monolayers. Overexpression of the C-terminus of PC1 had the opposite effects in DNA repair genes, suggesting its regulatory effects in atrial cardiomyocytes through retinoblastoma/E2F. Analyses of human atrial tissue from non-ADPKD patients showed reduced levels of mature PC1, suggesting a broader relevance of impaired PC1 in AF. CONCLUSIONS: Impaired PC1 increases in vivo AF inducibility under programmed electrical stimulation and promotes in vitro arrhythmias in hiPSC-aCM and HL-1 cells. Our findings indicate that PC1 protects against DNA damage to reduce AF susceptibility.

2.
Circulation ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910563

ABSTRACT

BACKGROUND: Alterations in the buffering of intracellular Ca2+, for which myofilament proteins play a key role, have been shown to promote cardiac arrhythmia. It is interesting that although studies report atrial myofibrillar degradation in patients with persistent atrial fibrillation (persAF), the intracellular Ca2+ buffering profile in persAF remains obscure. Therefore, we aim to investigate the intracellular buffering of calcium and its potential arrhythmogenic role in persAF. METHODS: Simultaneous transmembrane fluxes (patch-clamp) and intracellular Ca2+ signaling (fluo-3-acetoxymethyl ester) were recorded in myocytes from right atrial biopsies of sinus rhythm (control) and patients with persAF, alongside human atrial subtype induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Protein levels were quantified by immunoblotting of human atrial tissue and induced pluripotent stem cell-derived cardiac myocytes. Mouse whole heart and atrial electrophysiology was measured on a Langendorff system. RESULTS: Cytosolic Ca2+ buffering was decreased in atrial myocytes of patients with persAF because of a depleted amount of Ca2+ buffers. In agreement, protein levels of selected Ca2+ binding myofilament proteins, including cTnC (cardiac troponin C), a major cytosolic Ca2+ buffer, were significantly lower in patients with persAF. Small interfering RNA (siRNA)-mediated knockdown of cTnC in induced pluripotent stem cell-derived cardiac myocytes (si-cTnC) phenocopied the reduced cytosolic Ca2+ buffering observed in persAF. Si-cTnC induced pluripotent stem cell-derived cardiac myocytes exhibited a higher predisposition to spontaneous Ca2+ release events and developed action potential alternans at low stimulation frequencies. Last, indirect reduction of cytosolic Ca2+ buffering using blebbistatin in an ex vivo mouse whole heart model increased vulnerability to tachypacing-induced atrial arrhythmia, validating the direct mechanistic link between impaired cytosolic Ca2+ buffering and atrial arrhythmogenesis. CONCLUSIONS: Our findings suggest that loss of myofilament proteins, particularly reduced cTnC protein levels, causes diminished cytosolic Ca2+ buffering in persAF, thereby potentiating the occurrence of spontaneous Ca2+ release events and AF susceptibility. Strategies targeting intracellular buffering may represent a promising therapeutic lead in AF management.

4.
Circ Res ; 133(2): e19-e46, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37313752

ABSTRACT

BACKGROUND: Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS: We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS: We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS: Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Induced Pluripotent Stem Cells , Iron Deficiencies , Humans , Myocytes, Cardiac/metabolism , Mutation , Cardiomyopathy, Dilated/genetics , Induced Pluripotent Stem Cells/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Iron/metabolism , Clathrin/genetics , Clathrin/metabolism , Clathrin/pharmacology
5.
Basic Res Cardiol ; 118(1): 14, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37020075

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Aged , Calcium , Action Potentials , Cell Differentiation
6.
Commun Biol ; 5(1): 969, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109584

ABSTRACT

Crucial conventional patch-clamp approaches to investigate cellular electrophysiology suffer from low-throughput and require considerable experimenter expertise. Automated patch-clamp (APC) approaches are more experimenter independent and offer high-throughput, but by design are predominantly limited to assays containing small, homogenous cells. In order to enable high-throughput APC assays on larger cells such as native cardiomyocytes isolated from mammalian hearts, we employed a fixed-well APC plate format. A broad range of detailed electrophysiological parameters including action potential, L-type calcium current and basal inward rectifier current were reliably acquired from isolated swine atrial and ventricular cardiomyocytes using APC. Effective pharmacological modulation also indicated that this technique is applicable for drug screening using native cardiomyocyte material. Furthermore, sequential acquisition of multiple parameters from a single cell was successful in a high throughput format, substantially increasing data richness and quantity per experimental run. When appropriately expanded, these protocols will provide a foundation for effective mechanistic and phenotyping studies of human cardiac electrophysiology. Utilizing scarce biopsy samples, regular high throughput characterization of primary cardiomyocytes using APC will facilitate drug development initiatives and personalized treatment strategies for a multitude of cardiac diseases.


Subject(s)
Calcium , Myocytes, Cardiac , Animals , Electrophysiological Phenomena , Electrophysiology , Humans , Mammals , Patch-Clamp Techniques , Swine
7.
Basic Res Cardiol ; 117(1): 5, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35499658

ABSTRACT

Dilated cardiomyopathy (DCM) is a major risk factor for heart failure and is associated with the development of life-threatening cardiac arrhythmias. Using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model harbouring a mutation in cardiac troponin T (R173W), we aim to examine the cellular basis of arrhythmogenesis in DCM patients with this mutation. iPSC from control (Ctrl) and DCM-TnT-R173W donors from the same family were differentiated into iPSC-CM and analysed through optical action potential (AP) recordings, simultaneous measurement of cytosolic calcium concentration ([Ca2+]i) and membrane currents and separately assayed using field stimulation to detect the threshold for AP- and [Ca2+]i-alternans development. AP duration was unaltered in TnT-R173W iPSC-CM. Nevertheless, TnT-R173W iPSC-CM showed a strikingly low stimulation threshold for AP- and [Ca2+]i-alternans. Myofilaments are known to play a role as intracellular Ca2+ buffers and here we show increased Ca2+ affinity of intracellular buffers in TnT-R173W cells, indicating increased myofilament sensitivity to Ca2+. Similarly, EMD57033, a myofilament Ca2+ sensitiser, replicated the abnormal [Ca2+]i dynamics observed in TnT-R173W samples and lowered the threshold for alternans development. In contrast, application of a Ca2+ desensitiser (blebbistatin) to TnT-R173W iPSC-CM was able to phenotypically rescue Ca2+ dynamics, normalising Ca2+ transient profile and minimising the occurrence of Ca2+ alternans at physiological frequencies. This finding suggests that increased Ca2+ buffering likely plays a major arrhythmogenic role in patients with DCM, specifically in those with mutations in cardiac troponin T. In addition, we propose that modulation of myofilament Ca2+ sensitivity could be an effective anti-arrhythmic target for pharmacological management of this disease.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Arrhythmias, Cardiac/genetics , Calcium , Cardiomyopathy, Dilated/genetics , Humans , Myocytes, Cardiac , Troponin T/genetics , Troponin T/pharmacology
9.
Front Physiol ; 13: 812535, 2022.
Article in English | MEDLINE | ID: mdl-35360247

ABSTRACT

State of the art mathematical models are currently used to bridge the gap between basic research conducted in the laboratory and preclinical research conducted on large animals, which ultimately paves the way for clinical translation. In this regard, there is a great need for models that can be used alongside experiments for in-depth investigation and validation. One such experimental model is the porcine atrium, which is commonly used to study the mechanisms of onset and control of atrial fibrillation in the context of its surgical management. However, a mathematical model of pig atria is lacking. In this paper, we present the first ionically detailed mathematical model of porcine atrial electrophysiology, at body temperature. The model includes 12 ionic currents, 4 of which were designed based on experimental patch-clamp data directly obtained from literature. The formulations for the other currents are adopted from the human atrial model, and modified for porcine specificity based on our measured restitution data for different action potential characteristics: resting membrane potential, action potential amplitude, maximum upstroke velocity and action potential duration and different levels of membrane voltage repolarization. The intracellular Ca 2+ dynamics follows the Luo-Rudy formulation for guinea pig ventricular cardiomyocytes. The resulting model represents "normal" cells which are formulated as a system of ordinary differential equations. We extend our model to two dimensions to obtain plane wave propagation in tissue with a velocity of 0.58 m/s and a wavelength of 8 cm. The wavelength reduces to 5 cm when the tissue is paced at 200 ms. Using S1-S2 cross-field protocol, we demonstrate in an 11.26 cm square simulation domain, the ability to initiate single spiral waves (rotation period ≃ 180 ms) that remain stable for more than 40 s. The spiral tip exhibits hypermeander. In agreement with previous experimental results using pig atria, our model shows that early repolarization is primarily driven by a calcium-mediated chloride current, I ClCa , which is completely inactivated at high pacing frequencies. This is a condition that occurs only in porcine atria. Furthermore, the model shows spatiotemporal chaos with reduced repolarization.

10.
Cardiovasc Res ; 117(7): 1790-1801, 2021 06 16.
Article in English | MEDLINE | ID: mdl-32520995

ABSTRACT

AIMS: Atrial fibrillation (AF) is a commonly occurring arrhythmia after cardiac surgery (postoperative AF, poAF) and is associated with poorer outcomes. Considering that reduced atrial contractile function is a predictor of poAF and that Ca2+ plays an important role in both excitation-contraction coupling and atrial arrhythmogenesis, this study aims to test whether alterations of intracellular Ca2+ handling contribute to impaired atrial contractility and to the arrhythmogenic substrate predisposing patients to poAF. METHODS AND RESULTS: Right atrial appendages were obtained from patients in sinus rhythm undergoing open-heart surgery. Cardiomyocytes were investigated by simultaneous measurement of [Ca2+]i and action potentials (APs, patch-clamp). Patients were followed-up for 6 days to identify those with and without poAF. Speckle-tracking analysis of preoperative echocardiography revealed reduced left atrial contraction strain in poAF patients. At the time of surgery, cellular Ca2+ transients (CaTs) and the sarcoplasmic reticulum (SR) Ca2+ content were smaller in the poAF group. CaT decay was slower in poAF, but the decay of caffeine-induced Ca2+ transients was unaltered, suggesting preserved sodium-calcium exchanger function. In agreement, western blots revealed reduced SERCA2a expression in poAF patients but unaltered phospholamban expression/phosphorylation. Computational modelling indicated that reduced SERCA activity promotes occurrence of CaT and AP alternans. Indeed, alternans of CaT and AP occurred more often and at lower stimulation frequencies in atrial myocytes from poAF patients. Resting membrane potential and AP duration were comparable between both groups at various pacing frequencies (0.25-8 Hz). CONCLUSIONS: Biochemical, functional, and modelling data implicate reduced SERCA-mediated Ca2+ reuptake into the SR as a major contributor to impaired preoperative atrial contractile function and to the pre-existing arrhythmogenic substrate in patients developing poAF.


Subject(s)
Action Potentials , Atrial Appendage/metabolism , Atrial Fibrillation/etiology , Calcium Signaling , Calcium/metabolism , Cardiac Surgical Procedures/adverse effects , Heart Rate , Myocytes, Cardiac/metabolism , Aged , Atrial Appendage/physiopathology , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium-Binding Proteins/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , Phosphorylation , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Time Factors
12.
Europace ; 22(7): 1119-1131, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32572487

ABSTRACT

AIMS: The multi-C2 domain protein dysferlin localizes to the T-Tubule system of skeletal and heart muscles. In skeletal muscle, dysferlin is known to play a role in membrane repair and in T-tubule biogenesis and maintenance. Dysferlin deficiency manifests as muscular dystrophy of proximal and distal muscles. Cardiomyopathies have been also reported, and some dysferlinopathy mouse models develop cardiac dysfunction under stress. Generally, the role and functional relevance of dysferlin in the heart is not clear. The aim of this study was to analyse the effect of dysferlin deficiency on the transverse-axial tubule system (TATS) structure and on Ca2+ homeostasis in the heart. METHODS AND RESULTS: We studied dysferlin localization in rat and mouse cardiomyocytes by immunofluorescence microscopy. In dysferlin-deficient ventricular mouse cardiomyocytes, we analysed the TATS by live staining and assessed Ca2+ handling by patch-clamp experiments and measurement of Ca2+ transients and Ca2+ sparks. We found increasing co-localization of dysferlin with the L-type Ca2+-channel during TATS development and show that dysferlin deficiency leads to pathological loss of transversal and increase in longitudinal elements (axialization). We detected reduced L-type Ca2+-current (ICa,L) in cardiomyocytes from dysferlin-deficient mice and increased frequency of spontaneous sarcoplasmic reticulum Ca2+ release events resulting in pro-arrhythmic contractions. Moreover, cardiomyocytes from dysferlin-deficient mice showed an impaired response to ß-adrenergic receptor stimulation. CONCLUSIONS: Dysferlin is required for TATS biogenesis and maintenance in the heart by controlling the ratio of transversal and axial membrane elements. Absence of dysferlin leads to defects in Ca2+ homeostasis which may contribute to contractile heart dysfunction in dysferlinopathy patients.


Subject(s)
Calcium , Excitation Contraction Coupling , Animals , Dysferlin/genetics , Mice , Myocytes, Cardiac , Rats , Sarcoplasmic Reticulum
13.
Front Physiol ; 9: 1227, 2018.
Article in English | MEDLINE | ID: mdl-30349482

ABSTRACT

Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial "super-hub" Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting.

SELECTION OF CITATIONS
SEARCH DETAIL