Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Turk J Biol ; 47(4): 236-246, 2023.
Article in English | MEDLINE | ID: mdl-38152620

ABSTRACT

A skin wound or perforation triggers a series of homeostatic reactions to safeguard internal organs from invasion by pathogens or other substances that could damage body tissues. An injury may occasionally heal quickly, leading to the closure of the skin's structure. Healing from chronic wounds takes a long time. Although many treatment options are available to manage wound healing, an unmet therapy need remains because of the complexity of the processes and the other factors involved. It is crucial to conduct consistent research on novel therapeutic approaches to find an effective healing agent. Therefore, this work aims to cover various in vitro and in vivo methodologies that could be utilised to examine wound recovery. Before deciding on the optimal course of action, several techniques' benefits, drawbacks, and factors need to be reviewed.

2.
Antioxidants (Basel) ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37508018

ABSTRACT

In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-ß-ß carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.

3.
Sci Rep ; 13(1): 12180, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500670

ABSTRACT

Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited. The development of nanodelivery platform, namely Sorafenib-loaded chitosan nanoparticles (SF-CS NPs), was constructed in order to improve SF drug delivery to human Hepatocellular Carcinoma (HepG2) cell lines. The NPs were artificially fabricated using an ionic gelation technique. A number of CS NPs that had been loaded with an SF were prepared using different concentrations of sodium tripolyphosphate (TPP). These concentrations were 2.5, 5, 10, and 20 mg/mL, and they are abbreviated as SF-CS NPs 2.5, SF-CS NPs 5.0, SF-CS NPs 10, and SF-CS NPs 20 respectively. DLS, FTIR, XRD, HRTEM, TGA, and FESEM with EDX and TEM were used for the physiochemical characterisation of SF-CS NPs. Both DLS and HRTEM techniques demonstrated that smaller particles were produced when the TPP content was raised. In a PBS solution with a pH of 4.5, the SF exhibited efficient release from the nanoparticles, demonstrating that the delivery mechanism is effective for tumour cells. The cytotoxicity investigation showed that their anticancer effect against HepG2 cell lines was significantly superior than that of free SF. In addition, the nanodrug demonstrated an absence of any detectable toxicity to normal adult human dermal fibroblast (HDFa) cell lines. This is a step towards developing a more effective anticancer medication delivery system with sustained-release characteristics, which will ultimately improve the way cancer is managed.


Subject(s)
Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , Nanoparticles , Humans , Chitosan/chemistry , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Drug Carriers/chemistry
4.
Int J Mol Sci ; 24(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37373133

ABSTRACT

Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.


Subject(s)
Down Syndrome , Humans , Down Syndrome/genetics , Down Syndrome/metabolism , Neurons/metabolism , Brain/metabolism , Signal Transduction , Hypoxia-Inducible Factor 1/metabolism
5.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677655

ABSTRACT

This study documents for the first time the phytochemical composition and biological activities of Tambourissa peltata Baker, an endemic plant from Mauritius. Phytochemical extraction was performed using ethyl acetate, methanol and distilled water as solvents. The phytochemical composition was determined through HPLC-MS and other standard assays. The DPPH, ABTS, FRAP, CUPRAC and phosphomolybdenum assays were employed for the determination of the antioxidant potential, whereas cell viability assays were used to determine the cytotoxicity. The highest phenolic and phenolic acid contents were obtained in the aqueous extract (179.91 ± 0.67 gallic acid equivalents/g and 55.74 ± 1.43 caffeic acid equivalents/g). The highest quantity of flavonoids was obtained in the ethyl acetate extract (28.97 ± 0.46 rutin equivalents/g). The methanolic extract was the highest source of flavonols (33.71 ± 0.13 mg catechin equivalents/g). A total of 34 phytochemicals were identified, mainly proanthocyanidins and flavonoid glycosides. The highest antioxidant activity in DPPH (973.40 ± 5.65 mg TE (Trolox equivalents)/g), ABTS (2030.37 ± 40.83 mg TE/g), FRAP (1461.39 ± 5.95 mg TE/g), CUPRAC (1940.99 ± 20.95 mg TE/g) and phosphomolybdenum (8.37 ± 0.23 mmol TE/g) assays was recorded for the aqueous extract. The ethyl acetate extract was the most active metal chelator. The highest acetylcholinesterase inhibitor was the methanolic extract, whereas the ethyl acetate extract was the most active against BChE. The tyrosinase enzyme was most inhibited by the methanolic extract. Alpha-amylase and glucosidase were most inhibited by the aqueous extract. The methanolic extract was capable of inducing cell cytotoxicity to the human colorectal carcinoma without damaging normal cells. T. peltata warrants further attention from the scientific community given its multifaceted biological properties.


Subject(s)
Antineoplastic Agents , Antioxidants , Plant Extracts , Humans , Acetylcholinesterase , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Flavonoids/pharmacology , Methanol/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
6.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36671049

ABSTRACT

Ravenala madagascariensis is a widely known ornamental and medicinal plant, but with a dearth of scientific investigations regarding its phytochemical and pharmacological properties. Hence, these properties were appraised in this study. The DPPH (154.08 ± 2.43 mgTE/g), FRAP (249.40 ± 3.01 mgTE/g), CUPRAC (384.57 ± 1.99 mgTE/g), metal chelating (29.68 ± 0.74 mgEDTAE/g) and phosphomolybdenum assay (2.38 ± 0.07 mmolTE/g) results demonstrated that the aqueous extract had the most prominent antioxidant activity, while the methanolic extract displayed the best antioxidant potential in the ABTS assay (438.46 ± 1.69 mgTE/g). The HPLC-ESI-Q-TOF-MS-MS analysis allowed the characterization of 41 metabolites. The methanolic extract was the most active against acetylcholinesterase. All extracts were active against the alpha-amylase and alpha-glucosidase enzymes, with the ethyl acetate extract being the most active against the alpha-amylase enzyme, while the methanolic extract showed the best alpha-glucosidase inhibition. A plethora of metabolites bonded more energetically with the assayed enzymes active sites based on the results of the in silico studies. R. madagascariensis extracts used in this study exhibited cytotoxicity against HT29 cells. The IC50 of the methanolic extract was lower (506.99 ug/mL). Based on the heat map, whereby flavonoids were found to be in greater proportion in the extracts, it can be concluded that the flavonoid portion of the extracts contributed to the most activity.

7.
Antioxidants (Basel) ; 11(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36139750

ABSTRACT

Astaxanthin (3,3'-dihydroxy-4,4'-diketo-ß-ß carotene), which belongs to the xanthophyll class, has shown potential biological activity in in vitro and in vivo models including as a potent antioxidant, anti-lipid peroxidation and cardiovascular disease prevention agent. It is mainly extracted from an alga, Haematococcus pluvialis. As a highly lipid-soluble carotenoid, astaxanthin has been shown to have poor oral bioavailability, which limits its clinical applications. Recently, there have been several suggestions and the development of various types of nano-formulation, loaded with astaxanthin to enhance their bioavailability. The employment of nanoemulsions, liposomes, solid lipid nanoparticles, chitosan-based and PLGA-based nanoparticles as delivery vehicles of astaxanthin for nutritional supplementation purposes has proven a higher oral bioavailability of astaxanthin. In this review, we highlight the pharmacological properties, pharmacokinetics profiles and current developments of the nano-formulations of astaxanthin for its oral delivery that are believed to be beneficial for future applications. The limitations and future recommendations are also discussed in this review.

8.
Molecules ; 27(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36144622

ABSTRACT

Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant's biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.


Subject(s)
Antineoplastic Agents , Artemisia , Acetates , Amylases , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cholinesterases , Flavonoids/analysis , Flavonoids/pharmacology , Flavonols , Humans , Methanol/chemistry , Mice , Monophenol Monooxygenase , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/chemistry , alpha-Glucosidases/chemistry
9.
Life (Basel) ; 12(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36013466

ABSTRACT

Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that remains to be the leading cause of human death globally. Antiviral properties of phytoconstituents isolated from 45 plants were discussed for five different types of viral infections. The ability of the plants' active compounds with antiviral effects was highlighted as well as their mechanism of action, pharmacological studies, and toxicological data on a variety of cell lines. The experimental values, such as IC50, EC50, CC50, ED50, TD50, MIC100, and SI of the active compounds, were compiled and discussed to determine their potential. Among the plants mentioned, 11 plants showed the most promising medicinal plants against viral infections. Sambucus nigra and Clinacanthus nutans manifested antiviral activity against three different types of viral infections. Echinacea purpurea, Echinacea augustofolia, Echinacea pallida, Plantago major, Glycyrrhiza uralensis, Phyllanthus emblica, Camellia sinensis, and Cistus incanus exhibited antiviral activity against two different types of viral infections. Interestingly, Nicotiana benthamiana showed antiviral effects against mosquito-borne infections. The importance of phenolic acids, alkamides, alkylamides, glycyrrhizin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallocatechin (EGC), protein-based plant-produced ZIKV Envelope (PzE), and anti-CHIKV monoclonal antibody was also reviewed. An exploratory approach to the published literature was conducted using a variety of books and online databases, including Scopus, Google Scholar, ScienceDirect, Web of Science, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects, especially regarding medicinal plants. This evaluation gathered important information from all available library databases and Internet searches from 1992 to 2022.

10.
Sci Rep ; 12(1): 14086, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982084

ABSTRACT

Designing and synthesizing biodegradable drug delivery systems are key research areas in biomedical nanotechnology. Here, we report the development of biodegradable magnesium-layered hydroxide (MgLH) based nanodelivery systems using magnesium oxide (MgO) as the precursor by a precipitation method. The designed nanocarrier does not contain any trivalent metal ions, which are most commonly used for the synthesis of layered double hydroxides (LDHs). The designed delivery system was characterized in detail using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM) and inductively coupled plasma (ICP) analyses. The anti-tuberculosis (anti-TB) drug pyrazinamide (PZA) was successfully intercalated into interlayer galleries of MgLH, resulting in the formation of the nanocomposite, PZA-MgLH, having an average size of about 107 ± 24 nm with a uniform circular shape. The in vitro release of PZA in a human body simulated phosphate buffer saline (PBS) solution was sustained (i.e., almost 66 h) and followed a pseudo-secondorder kinetic model. Moreover, the designed nanodelivery system was found to be highly biocompatible with human normal lung cells (MRC-5) and with 3T3 fibroblast cells as controls for 24 and 48 h. Lastly, the PZA-MgLH nanocomposite showed good anti-tuberculosis activity against Mycobacterium tuberculosis and both the PZA-MgLH nanocomposite and its released free drug PZA showed antibacterial activity against tested Gram-positive and Gram-negative bacteria with percentage inhibition ranging from 5.6% to 68% against S. aureus, E. coli, and P. aeruginosa for the PZA free drug, and 32% to 32.5% against E. coli for the PZA-MgLH nanocomposite. In summary, the present results provide significant evidence that the designed nanodelivery system can be used for the delivery of PZA and, thus, should be investigated further for a wide range of anti-TB applications.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/therapeutic use , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Hydroxides/chemistry , Magnesium , Magnesium Hydroxide/chemistry , Pharmaceutical Preparations , Pyrazinamide/pharmacology , Staphylococcus aureus , Tuberculosis/drug therapy , Tuberculosis/microbiology
11.
Pharmaceutics ; 14(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745802

ABSTRACT

Nanomedicine-based drug-delivery systems have significant interest in cancer treatment, such as improving the stabilities and biocompatibilities, precise targeting, and reducing toxicities for non-cancerous cells. Herein, this study presents the synthesis and characterisation of carbonate apatite nanoparticles (nCA) and encapsulated afatinib (AFA) as promising drug delivery candidates for lung cancer treatment. nCA/AFA was synthesised and physicochemically characterised, then the encapsulation capacity, drug loading, and cumulative drug release profile were evaluated. Powder X-ray diffraction (PXRD) confirmed that the synthesised nCA is apatite. Fourier-transform infrared spectroscopy (FTIR) results confirmed the drug loading into the nanoparticles. High-resolution transmission electron microscopy (HR-TEM) determined the morphology of nCA and nCA/AFA and the diameters of 47.36 ± 3.16 and 42.97 ± 2.78 nm, respectively, without an unaltered nCA phase. Encapsulation efficiency (%) and drug loading (%) were 55.08% ± 1.68% and 8.19% ± 0.52%. Brunauer-Emmett-Teller (BET) and dynamic light-scattering (DLS) results revealed that the synthesised nCA is mesoporous, with a surface area of 55.53 m2/g, and is negatively charged. Atomic force microscopy (AFM) showed increasing roughness of nCA/AFA compared to nCA. The drug release from the nano-formulation nCA/AFA demonstrated slow and sustained release compared to the pure drug. Accordingly, nCA/AFA represents a promising drug delivery system for NSCLC treatment.

12.
ACS Biomater Sci Eng ; 8(6): 2445-2454, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35583465

ABSTRACT

Cancer-targeting nanotherapeutics offer promising opportunities for selective delivery of cytotoxic chemotherapeutics to cancer cells. However, the understanding of dissolution behavior and safety profiles of such nanotherapeutics is scarce. In this study, we report the dissolution profile of a cancer-targeting nanotherapeutic, gemcitabine (GEM) encapsulated within RGD-functionalized zeolitic imidazolate framework-8 (GEM⊂RGD@nZIF-8), in dissolution media having pH = 6.0 and 7.4. GEM⊂RGD@nZIF-8 was not only responsive in acidic media (pH = 6.0) but also able to sustain the dissolution rate (57.6%) after 48 h compared to non-targeting nanotherapeutic GEM⊂nZIF-8 (76%). This was reflected by the f2 value of 36.1, which indicated a difference in the dissolution behaviors of GEM⊂RGD@nZIF-8 and GEM⊂nZIF-8 in acidic media compared to those in neutral media (pH = 7.4). A dissolution kinetic study showed that the GEM release mechanism from GEM⊂RGD@nZIF-8 followed the Higuchi model. In comparison to a non-targeting nanotherapeutic, the cancer-targeting nanotherapeutic exhibited an enhanced permeability rate in healthy zebrafish embryos but did not induce lethality to 50% of the embryos (LC50 > 250 µg mL-1) with significantly improved survivability (75%) after 96 h of incubation. Monitoring malformation showed minimal adverse effects with only 8.3% of edema at 62.5 µg mL-1. This study indicates that cancer-targeting GEM⊂RGD@nZIF, with its pH-responsive behavior for sustaining chemotherapeutic dissolution in a physiologically relevant environment and its non-toxicity toward the healthy embryos within the tested concentrations, has considerable potential for use in cancer treatment.


Subject(s)
Neoplasms , Zebrafish , Animals , Cell Line, Tumor , Drug Delivery Systems , Neoplasms/drug therapy , Solubility
13.
Molecules ; 26(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34641379

ABSTRACT

Reports on fungicide-based agronanochemicals in combating disastrous basal stem rot disease in the oil palm industry are scant. Herein, we describe the potential of fungicide nanodelivery agents based on hexaconazole-micelle systems produced using three different surfactants; sodium dodecylbenze sulfonate (SDBS), sodium dodecyl sulfate (SDS) and Tween 80 (T80). The resulting nanodelivery systems were characterized and the results supported the encapsulation of the fungicide into the micelles of the surfactants. We have investigated in detail the size-dependent effects of the as-synthesized micelles towards the inhibition growth of Ganoderma Boninense fungi. All the nanodelivery systems indicate that their size decreased as the surfactant concentration was increased, and it directly affects the fungal inhibition. It was also found that Tween 80, a non-ionic surfactant gave the lowest effective concentration, the EC50 value of 2, on the pathogenic fungus Ganoderma boninense compared to the other anionic surfactants; SDBS and SDS. This study opens up a new generation of agronanofungicide of better efficacy for Ganoderma disease treatment.


Subject(s)
Antifungal Agents/pharmacology , Drug Delivery Systems , Ganoderma/drug effects , Micelles , Nanoparticles/administration & dosage , Surface-Active Agents/chemistry , Triazoles/pharmacology , Antifungal Agents/chemistry , Nanoparticles/chemistry , Triazoles/chemistry
14.
Int J Nanomedicine ; 16: 7035-7050, 2021.
Article in English | MEDLINE | ID: mdl-34703226

ABSTRACT

INTRODUCTION: Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS). METHODS: The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials. RESULTS: The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8. DISCUSSION: The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.


Subject(s)
Aminosalicylic Acid , Nanocomposites , Anti-Inflammatory Agents/pharmacology , Antitubercular Agents , Humans , Hydroxides , Magnesium , Magnesium Hydroxide
15.
Front Oncol ; 11: 612009, 2021.
Article in English | MEDLINE | ID: mdl-34490076

ABSTRACT

Mitochondria play important roles in regulating cell bioenergetics status and reactive oxygen species (ROS) generation. ROS-induced mitochondrial damage is among the main intracellular signal inducers of autophagy. Autophagy is a cellular catabolic process that regulates protein and organelle turnover, while a selective form of autophagy, mitophagy, specifically targets dysfunctional mitochondrial degradation. This study aims to measure the levels of autophagy, mitophagy, oxidative stress, and apoptosis in invasive breast carcinoma tissues using immunohistochemistry (IHC). Tissue microarrays of 76 patients with breast cancer were stained with six IHC markers (MnSOD, Beclin-1, LC3, BNIP3, Parkin, and cleaved caspase 3). The expression intensity was determined for each tumor tissue and the adjacent tumor-matched control tissues. Intermediate and strong staining scores of MnSOD, Beclin-1, LC-3, BNIP-3, and Parkin were significantly higher in tumor tissues compared to the adjacent matched control. The scoring intensity was further classified into tissues with negative staining and positive staining, which showed that positive scores of Beclin-1 and Parkin were significantly high in tumor tissues compared to other markers. Positive association was also noted between BNIP-3 and Beclin-1 as well as LC-3 and cleaved caspase-3 immunostaining. To our knowledge, this is one of the first studies that measure both mitophagy and autophagy in the same breast cancer tissues and the adjacent matched control. The findings from this study will be of great potential in identifying new cancer biomarkers and inspire significant interest in applying anti-autophagy therapies as a possible treatment for breast cancer.

16.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071389

ABSTRACT

Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.


Subject(s)
Chlorogenic Acid/chemistry , Drug Delivery Systems/methods , Graphite/chemistry , Hydroxybenzoates/chemistry , Nanocomposites/chemistry , Apoptosis/drug effects , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Survival/drug effects , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacokinetics , Drug Liberation , Graphite/administration & dosage , Graphite/pharmacokinetics , Hep G2 Cells , Humans , Hydroxybenzoates/administration & dosage , Hydroxybenzoates/pharmacokinetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Nanocomposites/administration & dosage , Reactive Oxygen Species/metabolism
17.
Foods ; 10(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069633

ABSTRACT

The supplementation of rumen bypass fat (RBF) has remained one of the preferred approaches used to decrease undesirable saturated fatty acids (FA) and increase beneficial unsaturated FA in the meat. This study was planned to evaluate the influences of rumen bypass fats on meat quality, fatty acid and metabolic profiles in male Dorper sheep (n = 36) with 24.66 ± 0.76 kg (mean ± standard error) initial body weight. Treatment comprised a basal diet (30:70 rice straw to concentrate) with no added RBF as a control (CON), basal diet with prilled fat (PF), basal diet with prilled fat plus lecithin (PFL) and basal diet with calcium soap of palm fatty acids (CaS). The findings revealed that cooking loss, drip loss and shear force in longissimus dorsi (LD) muscle were not affected by RBF supplementation, while meat pH was significantly higher in the CaS on aging day 1. However, the diet supplemented with prilled fat and lecithin modified the meat's fatty acid profile significantly by increasing unsaturated fatty acids and decreasing saturated fats. The relative quantification of the major differentiating metabolites found in LD muscle of sheep showed that total cholesterol, esterified cholesterol, choline, glycerophosphocholine and glycerophospholipids were significantly lower in CaS and PFL diets, while glycerol and sphingomyelin were significantly higher in CaS and PFL diets. Most of the metabolites in the liver did not show any significant difference. Based on our results, the supplementation of protected fats did not have a negative influence on meat quality and the meat from Dorper sheep fed prilled fat with lecithin contained more healthy fatty acids compared to other diets.

18.
Trop Life Sci Res ; 32(1): 145-162, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33936556

ABSTRACT

Mud lobsters are crustaceans from the genus Thalassina which are lesser known and seldom seen but are nevertheless an important organism to the mangrove ecosystem. In Malaysia and Thailand, mud lobsters are eaten by locals as treatment for asthma. It is traditionally believed that they are effective in reducing the number of asthma attacks and severity of asthma symptoms. However, the therapeutic potential of mud lobster extract remains unclear and has not been fully elucidated or reported in any scientific study. The objectives of this study are to investigate the anti-inflammatory potential of mud lobster, Thalassina anomala extracts (hexane, chloroform and methanol) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and to identify the potential bioactive compounds involved. An MTT assay was performed to determine the cytotoxicity of the T. anomala extracts on RAW 264.7 macrophages. Nitrite quantification assay and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the ability of the T. anomala extracts to suppress the secretion and expression of nitric oxide (NO), Prostaglandin E2 (PGE2) and proinflammatory cytokines (TNF-α, IL-6 and IL-1ß) in LPS-stimulated macrophages. GC-MS analysis was done to identify putative metabolites. The hexane extract of T. anomala showed anti-inflammatory activity by significantly inhibiting the LPS-induced production of NO, PGE2, interleukin- (IL-) 6, IL-1ß and tumour necrosis factor-alpha (TNF-α) in a concentration-dependent manner. Hexane extract treatment with 100 µg/mL has decreased the NO secretion into 37 µM. Meanwhile, hexane extract at concentration of 100 µg/mL able to significantly suppressed PGE2,TNF-α, IL-6 and IL-1ß production into 2015 pg/mL, 2406 pg/mL, 460 pg/mL and 9.6 pg/mL, respectively. GC-MS analysis of the hexane extract revealed the presence of 19 putative compounds. The identified compounds were reported to have anti-inflammatory, antioxidant and antibacterial activities. These results suggest that the hexane extract of T. anomala potentially has anti-inflammatory properties and concentration dependently suppressed NO, PGE2 and proinflammatory cytokines' production in LPS-stimulated macrophages. The findings provide a rational basis of the traditional use of mud lobster for inflammation-associated ailments.

19.
Polymers (Basel) ; 13(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802205

ABSTRACT

Iron oxide nanoparticles are suitable for biomedical applications owing to their ability to anchor to various active agents and drugs, unique magnetic properties, nontoxicity, and biocompatibility. In this work, the physico-chemical and magnetic properties, as well as the cytotoxicity, of Fe3O4 nanoparticles coated with a polymeric carrier and loaded with a 5-fluorouracil (5-FU) anti-cancer drug are discussed. The synthesized Fe3O4 nanoparticles were coated with polyvinyl alcohol and Zn/Al-layered double hydroxide as the drug host. The XRD, DTA/TG, and FTIR analyzes confirmed the presence of the coating layer on the surface of nanoparticles. The results showed a decrease in saturation magnetization of bare Fe3O4 nanoparticles after coating with the PVA/5FU/Zn/Al-LDH layer. In addition, the presence of the coating prevented the agglomeration of nanoparticles. Furthermore, the pseudo-second-order equation governed the kinetics of drug release. Finally, the coated nanoparticles showed stronger activity against liver cancer cells (HepG2) compared to that of the naked 5-FU drug, and displayed no cytotoxicity towards 3T3 fibroblast cell lines. The results of the present study demonstrate the potential of a nano delivery system for cancer treatment.

20.
Polymers (Basel) ; 13(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919467

ABSTRACT

The biocompatibility of carbon nanotubes (CNT) is fairly a challenging task for their applications in nanomedicine. Therefore, the objective of this research was to formulate four types of highly biocompatible betulinic acid-loaded biopolymer nanocomposites, namely chitosan-multiwalled carbon nanotubes (MWBA-CS), polyethylene glycol-multiwalled carbon nanotubes (MWBA-PG), Tween 20-multiwalled carbon nanotubes (MWBA-T2) and Tween 80-multiwalled carbon nanotubes (MWBA-T8). The physico-chemical properties of the modified nanocomposites were determined by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and Raman spectroscopy, while the surface morphology of the resulting nanocomposites was studied using field emission scanning electron microscopy (FESEM). All data revealed that the external surface of MWBA nanocomposites was successfully coated with the respective polymer molecules through hydrophobic and electrostatic interactions with improved thermal profiles. The cell viability assay, which was performed on cultured normal embryonic mouse fibroblast cells, confirmed their excellent biocompatibility in phosphate-buffered saline aqueous media. Overall, our findings herein suggest that the synthesized biopolymer-coated MWBA nanocomposites are promising nanomaterials for drug delivery applications as they enhance the solubility and dispersibility of CNT with significantly reduced cytotoxic effect, especially in normal cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...