Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
New Phytol ; 235(4): 1558-1574, 2022 08.
Article in English | MEDLINE | ID: mdl-35569105

ABSTRACT

Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.


Subject(s)
Ralstonia solanacearum , Bacteria/genetics , Fertilizers , Plant Diseases/microbiology , Rhizosphere , Soil/chemistry , Soil Microbiology
2.
Brain Behav Immun Health ; 16: 100305, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34589797

ABSTRACT

BACKGROUND: Inflammation plays an important role in postoperative cognitive dysfunction (POCD), particularly in elderly patients. Enteral enriched nutrition was shown to inhibit the response on inflammatory stimuli. Aim of the present study was to explore the therapeutic potential of enteral enriched nutrition in our rat model for POCD. The anticipated mechanism of action was examined in young rats, while responses in the target group of elderly patients were evaluated in old rats. METHODS: Male 3 and 23 months old Wistar rats received a bolus of enteral fat/protein-enriched nutrition 2 â€‹h and 30 â€‹min before surgery. The inflammatory response was evaluated by systemic inflammation markers and brain microglia activity. Additionally, in old rats, the role of the gut-brain axis was studied by microbiome analyses of faecal samples. Days 9-14 after surgery, rats were subjected to cognitive testing. Day 16, rats were sacrificed and brains were collected for immunohistochemistry. RESULTS: In young rats, enriched nutrition improved long-term spatial learning and memory in the Morris Water Maze, reduced plasma IL1-ß and VEGF levels, but left microglia activity and neurogenesis unaffected. In contrast, in old rats, enriched nutrition improved short-term memory in the novel object- and novel location recognition tests, but impaired development of long-term memory in the Morris Water Maze. Systemic inflammation was not affected, but microglia activity seemed even increased. Gut integrity and microbiome were not affected. CONCLUSION: Enteral enriched nutrition before surgery in young rats indeed reduced systemic inflammation and improved cognitive performance after surgery, whereas old rats showed a mixed favorable/unfavorable cognitive response, without effect on systemic inflammation. Anti-inflammatory effects of enriched nutrition were not reflected in decreased microglia activity. Neither was an important role for the gut-brain axis observed. Since the relatively straight forward effects of enriched nutrition in young rats could not be shown in old rats, as indicated by a mixed beneficial/detrimental cognitive outcome in the latter, caution is advised by translating effects seen in younger patients to older ones.

3.
J Neuroinflammation ; 18(1): 156, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34238316

ABSTRACT

BACKGROUND: Inflammation is considered a key factor in the development of postoperative cognitive dysfunction (POCD). Therefore, we hypothesized that pre-operative anti-inflammatory treatment with ibuprofen would inhibit POCD in our rat-model. METHODS: Male Wistar rats of 3 or 23 months old received a single injection of ibuprofen (15 mg/kg i.p.) or were control handled before abdominal surgery. Timed blood and fecal samples were collected for analyses of inflammation markers and gut microbiome changes. Behavioral testing was performed from 9 to 14 days after surgery, in the open field, novel object- and novel location-recognition tests and Morris water maze. Neuroinflammation and neurogenesis were assessed by immune histochemistry after sacrifice on postoperative day 14. RESULTS: Ibuprofen improved short-term spatial memory in the novel location recognition test, and increased hippocampal neurogenesis. However, these effects were associated with increased hippocampal microglia activity. Whereas plasma cytokine levels (IL1-ß, IL6, IL10, and TNFα) were not significantly affected, VEGF levels increased and IFABP levels decreased after ibuprofen. Long-term memory in the Morris water maze was not significantly improved by ibuprofen. The gut microbiome was neither significantly affected by surgery nor by ibuprofen treatment. In general, effects in aged rats appeared similar to those in young rats, though less pronounced. CONCLUSION: A single injection of ibuprofen before surgery improved hippocampus-associated short-term memory after surgery and increased neurogenesis. However, this favorable outcome seemed not attributable to inhibition of (neuro)inflammation. Potential contributions of intestinal and blood-brain barrier integrity need further investigation. Although less pronounced compared to young rats, effects in aged rats indicate that even elderly individuals could benefit from ibuprofen treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cognition/drug effects , Ibuprofen/administration & dosage , Postoperative Cognitive Complications/drug therapy , Preoperative Care/methods , Animals , Cognition/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Maze Learning/physiology , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/psychology , Rats , Rats, Wistar
4.
Microb Ecol ; 82(2): 537-548, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33420910

ABSTRACT

The digestive tract of animals harbors microbiota important for the host's fitness and performance. The interaction between digestive tract bacteria and soil animal hosts is still poorly explored despite the importance of soil fauna for ecosystem processes. In this study, we investigated the interactions between the bacterial communities from the digestive tract of the litter-feeding, semi-terrestrial crustacean Orchestia gammarellus and those obtained from the environment; these organisms thrive in, i.e., soil and plant litter from salt marshes. We hypothesized that elevation is an important driver of soil and litter bacterial communities, which indirectly (via ingested soil and litter bacteria) influences the bacterial communities in the digestive tract of O. gammarellus. Indeed, our results revealed that elevation modulated soil and litter bacterial community composition along with soil organic matter content and the C:N ratio. Soil and plant litter differed in alpha diversity indexes (richness and diversity), and in the case of plant litter, both indexes increased with elevation. In contrast, elevation did not affect the composition of bacterial communities associated with O. gammarellus' digestive tract, suggesting selection by the host, despite the fact that a large component of the bacterial community was also detected in external sources. Importantly, Ca. Bacilloplasma and Vibrio were highly prevalent and abundant in the host. The taxonomic comparison of Ca. Bacilloplasma amplicon sequence variants across the host at different elevations suggested a phylogenetic divergence due to host habitat (i.e., marine or semi-terrestrial), thus supporting their potential functional role in the animal physiology. Our study sheds light on the influence of the environment on soil animal-bacteria interactions and provides insights into the resilience of the O. gammarellus-associated bacteria to increased flooding frequency.


Subject(s)
Microbiota , Wetlands , Animals , Bacteria/genetics , Ecosystem , Phylogeny , Soil , Soil Microbiology
5.
Environ Microbiol ; 23(2): 669-681, 2021 02.
Article in English | MEDLINE | ID: mdl-32419297

ABSTRACT

Soil microbial communities are often not resistant to the impact caused by microbial invasions, both in terms of structure and functionality, but it remains unclear whether these changes persist over time. Here, we used three strains of Escherichia coli O157:H7 (E. coli O157:H7), a species used for modelling bacterial invasions, to evaluate the resilience of the bacterial communities from four Chinese soils to invasion. The impact of E. coli O157:H7 strains on soil native communities was tracked for 120 days by analysing bacterial community composition as well as their metabolic potential. We showed that soil native communities were not resistant to invasion, as demonstrated by a decline in bacterial diversity and shifts in bacterial composition in all treatments. The resilience of native bacterial communities (diversity and composition) was inversely correlated with invader's persistence in soils (R2 = 0.487, p < 0.001). Microbial invasions also impacted the functionality of the soil communities (niche breadth and community niche), the degree of resilience being dependent on soil or native community diversity. Collectively, our results indicate that bacteria invasions can potentially leave a footprint in the structure and functionality of soil communities, indicating the need of assessing the legacy of introducing exotic species in soil environments.


Subject(s)
Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Introduced Species , Microbial Interactions/physiology , Soil Microbiology , Ecosystem , Microbiota , Soil/chemistry
6.
Front Nutr ; 8: 735366, 2021.
Article in English | MEDLINE | ID: mdl-35059423

ABSTRACT

Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pahenu2 mice received either a control diet (normal protein, "high" Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account.

7.
Microorganisms ; 8(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096699

ABSTRACT

Elytrigia atherica is a native invasive plant species whose expansion on salt marshes is attributed to genotypic and phenotypic adaptations to non-ideal environmental conditions, forming two ecotypes. It is unknown how E. atherica-microbiome interactions are contributing to its adaptation. Here we investigated the effect of sea-water flooding frequency and associated soil (a)biotic conditions on plant traits and root-associated microbial community composition and potential functions of two E. atherica ecotypes. We observed higher endomycorrhizal colonization in high-elevation ecotypes (HE, low inundation frequency), whereas low-elevation ecotypes (LE, high inundation frequency) had higher specific leaf area. Similarly, rhizosphere and endosphere bacterial communities grouped according to ecotypes. Soil ammonium content and elevation explained rhizosphere bacterial composition. Around 60% the endosphere amplicon sequence variants (ASVs) were also found in soil and around 30% of the ASVs were ecotype-specific. The endosphere of HE-ecotype harbored more unique sequences than the LE-ecotype, the latter being abundant in halophylic bacterial species. The composition of the endosphere may explain salinity and drought tolerance in relation to the local environmental needs of each ecotype. Overall, these results suggest that E. atherica is flexible in its association with soil bacteria and ecotype-specific dissimilar, which may enhance its competitive strength in salt marshes.

9.
Microorganisms ; 8(6)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466517

ABSTRACT

Quantifying which assembly processes structure microbiomes can assist prediction, manipulation, and engineering of community outcomes. However, the relative importance of these processes might depend on whether DNA or RNA are used, as they differ in stability. We hypothesized that. RNA-inferred community responses to (a)biotic fluctuations are faster than those inferred by DNA; the relative influence of variable selection is stronger in RNA-inferred communities (environmental factors are spatiotemporally heterogeneous), whereas homogeneous selection largely influences DNA-inferred communities (environmental filters are constant). To test these hypotheses, we characterized soil bacterial communities by sequencing both 16S rRNA amplicons from the extracted DNA and RNA transcripts across distinct stages of soil primary succession and quantified the relative influence of each assembly process using ecological null model analysis. Our results revealed that variations in α-diversity and temporal turnover were higher in RNA- than in DNA-inferred communities across successional stages, albeit there was a similar community composition; in line with our hypotheses, the assembly of RNA-inferred community was more closely associated with environmental variability (variable selection) than using the standard DNA-based approach, which was largely influenced by homogeneous selection. This study illustrates the need for benchmarking approaches to properly elucidate how community assembly processes structure microbial communities.

10.
Anim Microbiome ; 2(1): 21, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-33499970

ABSTRACT

BACKGROUND: The relevance of the host microbiota to host ecology and evolution is well acknowledged. However, the effect of the microbial environment on host immune function and host microbiota dynamics is understudied in terrestrial vertebrates. Using a novel experimental approach centered on the manipulation of the microbial environment of zebra finches Taeniopygia guttata, we carried out a study to investigate effects of the host's microbial environment on: 1) constitutive immune function, 2) the resilience of the host cloacal microbiota; and 3) the degree to which immune function and host microbiota covary in microbial environments that differ in diversity. RESULTS: We explored immune indices (hemagglutination, hemolysis, IgY levels and haptoglobin concentration) and host-associated microbiota (diversity and composition) in birds exposed to two experimental microbial environments differing in microbial diversity. According to our expectations, exposure to experimental microbial environments led to differences related to specific antibodies: IgY levels were elevated in the high diversity treatment, whereas we found no effects for the other immune indices. Furthermore, according to predictions, we found significantly increased richness of dominant OTUs for cloacal microbiota of birds of the high diversity compared with the low diversity group. In addition, cloacal microbiota of individual females approached their baseline state sooner in the low diversity environment than females in the high diversity environment. This result supported a direct phenotypically plastic response of host microbiota, and suggests that its resilience depends on environmental microbial diversity. Finally, immune indices and cloacal microbiota composition tend to covary within treatment groups, while at the same time, individuals exhibited consistent differences of immune indices and microbiota characteristics. CONCLUSION: We show that microbes in the surroundings of terrestrial vertebrates can influence immune function and host-associated microbiota dynamics over relatively short time scales. We suggest that covariation between immune indices and cloacal microbiota, in addition to large and consistent differences among individuals, provides potential for evolutionary adaptation. Ultimately, our study highlights that linking environmental and host microbiotas may help unravelling immunological variation within and potentially among species, and together these efforts will advance the integration of microbial ecology and ecological immunology.

11.
Trends Microbiol ; 27(7): 635-650, 2019 07.
Article in English | MEDLINE | ID: mdl-31056303

ABSTRACT

When studying the effects of climate change on eukaryotic organisms we often oversee a major ecological process: the interaction with microbes. Eukaryotic hosts and microbes form functional units, termed holobionts, where microbes play crucial roles in host functioning. Environmental stress may disturb these complex mutualistic relations. Macroalgae form the foundation of coastal ecosystems worldwide and provide important ecosystem services - services they could likely not provide without their microbial associates. Still, today we do not know how environmental stress will affect the macroalgal holobiont in an increasingly changing ocean. In this review, we provide a conceptual framework that contributes to understanding the different levels at which the holobiont and environment interact, and we suggest a manipulative experimental approach as a guideline for future research.


Subject(s)
Microbiota , Seaweed , Water Microbiology , Biodiversity , Climate Change , Ecosystem , Environment , Host-Pathogen Interactions , Oceans and Seas
12.
Trends Microbiol ; 27(6): 480-488, 2019 06.
Article in English | MEDLINE | ID: mdl-30857919

ABSTRACT

Symbiosis between microbial associates and a host is a ubiquitous feature of life on earth, modulating host phenotypes. In addition to endosymbionts, organisms harbour a collection of host-associated microbes, the microbiome that can impact important host traits. In this opinion article we argue that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied. Focusing on the endosymbiont Wolbachia, we present growing evidence indicating that host phenotypic effects are exerted in interaction with the remainder microbiome and the host. We thus advocate that only through an integrated approach that considers multiple interacting partners and environmental influences will we be able to gain a better understanding of host-microbe associations.


Subject(s)
Host-Pathogen Interactions , Microbiota , Symbiosis , Animals , Environment , Humans , Microbial Interactions
13.
Trends Microbiol ; 26(9): 738-747, 2018 09.
Article in English | MEDLINE | ID: mdl-29550356

ABSTRACT

Our planet teems with microorganisms that often present a skewed abundance distribution in a local community, with relatively few dominant species coexisting alongside a high number of rare species. Recent studies have demonstrated that these rare taxa serve as limitless reservoirs of genetic diversity, and perform disproportionate types of functions despite their low abundances. However, relatively little is known about the mechanisms controlling rarity and the processes promoting the development of the rare biosphere. Here, we propose the use of multivariate cut-offs to estimate rare species and phylogenetic null models applied to predefined rare taxa to disentangle the relative influences of ecoevolutionary processes mediating the assembly of the rare biosphere. Importantly, the identification of the factors controlling rare species assemblages is critical for understanding the types of rarity, how the rare biosphere is established, and how rare microorganisms fluctuate over spatiotemporal scales, thus enabling prospective predictions of ecosystem responses.


Subject(s)
Ecosystem , Microbiota , Phylogeny , Biodiversity , Ecology , Genes, rRNA/genetics , Genetic Variation , Microbiota/genetics
14.
Appl Microbiol Biotechnol ; 102(6): 2913-2927, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29397428

ABSTRACT

The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.


Subject(s)
Bacteria/metabolism , Biomass , Fungi/metabolism , Lignin/metabolism , Microbial Consortia , Triticum/metabolism , Bacteria/classification , Bacteria/isolation & purification , Fungi/classification , Fungi/isolation & purification , Hydrolysis , Salinity , Soil Microbiology
15.
Microb Ecol ; 76(2): 419-429, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29392382

ABSTRACT

Enriched microbial communities, obtained from environmental samples through selective processes, can effectively contribute to lignocellulose degradation. Unfortunately, fully controlled industrial degradation processes are difficult to reach given the intrinsically dynamic nature and complexity of the microbial communities, composed of a large number of culturable and unculturable species. The use of less complex but equally effective microbial consortia could improve their applications by allowing for more controlled industrial processes. Here, we combined ecological theory and enrichment principles to develop an effective lignocellulose-degrading minimal active microbial Consortia (MAMC). Following an enrichment of soil bacteria capable of degrading lignocellulose material from sugarcane origin, we applied a reductive-screening approach based on molecular phenotyping, identification, and metabolic characterization to obtain a selection of 18 lignocellulose-degrading strains representing four metabolic functional groups. We then generated 65 compositional replicates of MAMC containing five species each, which vary in the number of functional groups, metabolic potential, and degradation capacity. The characterization of the MAMC according to their degradation capacities and functional diversity measurements revealed that functional diversity positively correlated with the degradation of the most complex lignocellulosic fraction (lignin), indicating the importance of metabolic complementarity, whereas cellulose and hemicellulose degradation were either negatively or not affected by functional diversity. The screening method described here successfully led to the selection of effective MAMC, whose degradation potential reached up 96.5% of the degradation rates when all 18 species were present. A total of seven assembled synthetic communities were identified as the most effective MAMC. A consortium containing Stenotrophomonas maltophilia, Paenibacillus sp., Microbacterium sp., Chryseobacterium taiwanense, and Brevundimonas sp. was found to be the most effective degrading synthetic community.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Lignin/metabolism , Microbial Consortia/physiology , Bacteria/enzymology , Bacteria/isolation & purification , Biodegradation, Environmental , Biodiversity , Cellulose/metabolism , DNA, Bacterial/analysis , Enzyme Assays , Multivariate Analysis , Paenibacillus/metabolism , Phylogeny , Polysaccharides/metabolism , Soil Microbiology , Stenotrophomonas maltophilia/metabolism
16.
Microbiome ; 5(1): 156, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29191217

ABSTRACT

BACKGROUND: Working toward a general framework to understand the role of microbiota in animal biology requires the characterisation of animal-associated microbial communities and identification of the evolutionary and ecological factors shaping their variation. In this study, we described the microbiota in the cloaca, brood patch skin and feathers of two species of birds and the microbial communities in their nest environment. We compared patterns of resemblance between these microbial communities at different levels of biological organisation (species, individual, body part) and investigated the phylogenetic structure to deduce potential microbial community assembly processes. RESULTS: Using 16S rRNA gene amplicon data of woodlarks (Lullula arborea) and skylarks (Alauda arvensis), we demonstrated that bird- and nest-associated microbiota showed substantial OTU co-occurrences and shared dominant taxonomic groups, despite variation in OTU richness, diversity and composition. Comparing host species, we uncovered that sympatric woodlarks and skylarks harboured similar microbiota, dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria. Yet, compared with the nest microbiota that showed little variation, each species' bird-associated microbiota displayed substantial variation. The latter could be partly (~ 20%) explained by significant inter-individual differences. The various communities of the bird's body (cloaca, brood patch skin and feathers) appeared connected with each other and with the nest microbiota (nest lining material and surface soil). Communities were more similar when the contact between niches was frequent or intense. Finally, bird microbiota showed significant phylogenetic clustering at the tips, but not at deeper branches of the phylogeny. CONCLUSIONS: Our interspecific comparison suggested that the environment is more important than phylogeny in shaping the bird-associated microbiotas. In addition, variation among individuals and among body parts suggested that intrinsic or behavioural differences among females and spatial heterogeneity among territories contributed to the microbiome variation of larks. Modest but significant phylogenetic clustering of cloacal, skin and feather microbiotas suggested weak habitat filtering in these niches. We propose that lark microbiota may be primarily, but not exclusively, shaped by horizontal acquisition from the regional bacterial pool at the breeding site. More generally, we hypothesise that the extent of ecological niche-sharing by avian (or other vertebrate) hosts may predict the convergence of their microbiota.


Subject(s)
Bacteria/isolation & purification , Birds/microbiology , Cloaca/microbiology , Feathers/microbiology , Microbiota , Skin/microbiology , Acidobacteria/classification , Acidobacteria/genetics , Acidobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Birds/anatomy & histology , Birds/classification , Ecosystem , Female , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
17.
PLoS One ; 11(12): e0167726, 2016.
Article in English | MEDLINE | ID: mdl-27973604

ABSTRACT

In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance against natural parasites.


Subject(s)
Bacteria/classification , Disease Resistance/genetics , Drosophila melanogaster/microbiology , Drosophila melanogaster/parasitology , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Feeding Behavior , Female , Founder Effect , Genetics, Population , Genotype , Geography , Host-Parasite Interactions , Larva/parasitology , Microbial Consortia , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Species Specificity , Wasps/physiology , Wolbachia
19.
Front Plant Sci ; 6: 1188, 2015.
Article in English | MEDLINE | ID: mdl-26779222

ABSTRACT

Proper quantification of the relative influence of soil and plant host on the root-associated microbiome can only be achieved by studying its distribution along an environmental gradient. Here, we used an undisturbed salt marsh chronosequence to study the bacterial communities associated with the soil, rhizosphere and the root endopshere of Limonium vulgare using 454-pyrosequencing. We hypothesize that the selective force exerted by plants rather than soil would regulate the dynamics of the root-associated bacterial assembly along the chronosequence. Our results showed that the soil and rhizosphere bacterial communities were phylogenetically more diverse than those in the endosphere. Moreover, the diversity of the rhizosphere microbiome followed the increased complexity of the abiotic and biotic factors during succession while remaining constant in the other microbiomes. Multivariate analyses showed that the rhizosphere and soil-associated communities clustered by successional stages, whereas the endosphere communities were dispersed. Interestingly, the endosphere microbiome showed higher turnover, while the bulk and rhizosphere soil microbiomes became more similar at the end of the succession. Overall, we showed that soil characteristics exerted an overriding influence on the rhizosphere microbiome, although plant effect led to a clear diversity pattern along the succession. Conversely, the endosphere microbiome was barely affected by any of the environmental measurements and very distinct from other communities.

20.
Appl Environ Microbiol ; 79(4): 1160-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23220956

ABSTRACT

In this study, the impacts of six potato (Solanum tuberosum) cultivars with different tuber starch allocations (including one genetically modified [GM] line) on the bacterial communities in field soil were investigated across two growth seasons interspersed with 1 year of barley cultivation, using quantitative PCR, clone library, and PCR-denaturing gradient gel electrophoresis (DGGE) analyses. It was hypothesized that the modifications in the tuber starch contents of these plants, yielding changed root growth rates and exudation patterns, might have elicited altered bacterial communities in the soil. The data showed that bacterial abundances in the bulk soil varied over about 2 orders of magnitude across the 3 years. As expected, across all cultivars, positive potato rhizosphere effects on bacterial abundances were noted in the two potato years. The bulk soil bacterial community structures revealed progressive shifts across time, and moving-window analysis revealed a 60% change over the total experiment. Consistent with previous findings, the community structures in the potato rhizosphere compartments were mainly affected by the growth stage of the plants and, to a lesser extent, by plant cultivar type. The data from the soil under the non-GM potato lines were then taken to define the normal operating range (NOR) of the microbiota under potatoes. Interestingly, the bacterial communities under the GM potato line remained within this NOR. In regard to the bacterial community compositions, particular bacterial species in the soil appeared to be specific to (i) the plant species under investigation (barley versus potato) or, with respect to potatoes, (ii) the plant growth stage. Members of the genera Arthrobacter, Streptomyces, Rhodanobacter, and Dokdonella were consistently found only at the flowering potato plants in both seasons, whereas Rhodoplanes and Sporosarcina were observed only in the soil planted to barley.


Subject(s)
Biota , Metagenome , Soil Microbiology , Solanum tuberosum/growth & development , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Rhizosphere , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...