Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nature ; 625(7994): 345-351, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057661

ABSTRACT

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Subject(s)
Frontotemporal Lobar Degeneration , TATA-Binding Protein Associated Factors , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Brain Stem/metabolism , Brain Stem/pathology , Cryoelectron Microscopy , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/complications , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/ultrastructure , Temporal Lobe/metabolism , Temporal Lobe/pathology
2.
Proc Natl Acad Sci U S A ; 120(51): e2306767120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38100415

ABSTRACT

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterized by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here, we used electron cryo-microscopy to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in three Kii cases and tau filaments with the corticobasal degeneration fold in one Kii case. We identified a new Type III CTE tau filament, where protofilaments pack against each other in an antiparallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.


Subject(s)
Amyotrophic Lateral Sclerosis , Chronic Traumatic Encephalopathy , Dementia , Neurodegenerative Diseases , Parkinsonian Disorders , Tauopathies , Humans , Amyotrophic Lateral Sclerosis/complications , Dementia/etiology , Parkinsonian Disorders/complications , Japan , tau Proteins
3.
Nature ; 621(7980): 701-710, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37758888

ABSTRACT

Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-ß proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.


Subject(s)
Amyloid , Cryoelectron Microscopy , Neurodegenerative Diseases , Pathology, Molecular , Protein Folding , Humans , alpha-Synuclein , Amyloid/chemistry , Amyloid/classification , Amyloid/ultrastructure , Amyloid beta-Peptides , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
4.
Nature ; 620(7975): 898-903, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532939

ABSTRACT

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Subject(s)
DNA-Binding Proteins , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Citrullination , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/classification , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Methylation
5.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162924

ABSTRACT

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterised by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in two Kii cases. We also identified a novel Type III CTE tau filament, where protofilaments pack against each other in an anti-parallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.

6.
Nature ; 605(7909): 310-314, 2022 05.
Article in English | MEDLINE | ID: mdl-35344985

ABSTRACT

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Subject(s)
Aging , Amyloid , Amyloidosis , Brain , Membrane Proteins , Nerve Tissue Proteins , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Brain/metabolism , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Plaque, Amyloid/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
7.
Science ; 375(6577): 167-172, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35025654

ABSTRACT

Filament assembly of amyloid-ß peptides ending at residue 42 (Aß42) is a central event in Alzheimer's disease. Here, we report the cryo­electron microscopy (cryo-EM) structures of Aß42 filaments from human brains. Two structurally related S-shaped protofilament folds give rise to two types of filaments. Type I filaments were found mostly in the brains of individuals with sporadic Alzheimer's disease, and type II filaments were found in individuals with familial Alzheimer's disease and other conditions. The structures of Aß42 filaments from the brain differ from those of filaments assembled in vitro. By contrast, in AppNL-F knock-in mice, Aß42 deposits were made of type II filaments. Knowledge of Aß42 filament structures from human brains may lead to the development of inhibitors of assembly and improved imaging agents.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Brain Chemistry , Peptide Fragments/chemistry , Peptide Fragments/ultrastructure , Aged , Aged, 80 and over , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Animals , Cryoelectron Microscopy , Female , Gene Knock-In Techniques , Humans , Male , Mice , Middle Aged , Models, Animal , Models, Molecular , Peptide Fragments/genetics , Protein Conformation , Protein Conformation, beta-Strand , Protein Domains , Protein Folding
8.
Nature ; 601(7891): 139-143, 2022 01.
Article in English | MEDLINE | ID: mdl-34880495

ABSTRACT

The abnormal aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in neurons and glia is the defining pathological hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and multiple forms of frontotemporal lobar degeneration (FTLD)1,2. It is also common in other diseases, including Alzheimer's and Parkinson's. No disease-modifying therapies exist for these conditions and early diagnosis is not possible. The structures of pathological TDP-43 aggregates are unknown. Here we used cryo-electron microscopy to determine the structures of aggregated TDP-43 in the frontal and motor cortices of an individual who had ALS with FTLD and from the frontal cortex of a second individual with the same diagnosis. An identical amyloid-like filament structure comprising a single protofilament was found in both brain regions and individuals. The ordered filament core spans residues 282-360 in the TDP-43 low-complexity domain and adopts a previously undescribed double-spiral-shaped fold, which shows no similarity to those of TDP-43 filaments formed in vitro3,4. An abundance of glycine and neutral polar residues facilitates numerous turns and restricts ß-strand length, which results in an absence of ß-sheet stacking that is associated with cross-ß amyloid structure. An uneven distribution of residues gives rise to structurally and chemically distinct surfaces that face external densities and suggest possible ligand-binding sites. This work enhances our understanding of the molecular pathogenesis of ALS and FTLD and informs the development of diagnostic and therapeutic agents that target aggregated TDP-43.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/ultrastructure , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Amino Acid Sequence , Amyloid beta-Peptides/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontal Lobe/ultrastructure , Humans , Male , Middle Aged , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Cortex/ultrastructure , Mutation
9.
Nature ; 598(7880): 359-363, 2021 10.
Article in English | MEDLINE | ID: mdl-34588692

ABSTRACT

The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.


Subject(s)
Cryoelectron Microscopy , Protein Folding , Tauopathies/classification , tau Proteins/chemistry , tau Proteins/ultrastructure , Aged , Aged, 80 and over , Amino Acid Sequence , Dementia/genetics , Denmark , Female , Humans , Introns/genetics , Male , Middle Aged , Models, Molecular , Mutation , Protein Isoforms/chemistry , Protein Isoforms/ultrastructure , Supranuclear Palsy, Progressive , Tauopathies/pathology , United Kingdom
11.
Acta Neuropathol ; 141(5): 697-708, 2021 05.
Article in English | MEDLINE | ID: mdl-33723967

ABSTRACT

Tau and Aß assemblies of Alzheimer's disease (AD) can be visualized in living subjects using positron emission tomography (PET). Tau assemblies comprise paired helical and straight filaments (PHFs and SFs). APN-1607 (PM-PBB3) is a recently described PET ligand for AD and other tau proteinopathies. Since it is not known where in the tau folds PET ligands bind, we used electron cryo-microscopy (cryo-EM) to determine the binding sites of APN-1607 in the Alzheimer fold. We identified two major sites in the ß-helix of PHFs and SFs and a third major site in the C-shaped cavity of SFs. In addition, we report that tau filaments from posterior cortical atrophy (PCA) and primary age-related tauopathy (PART) are identical to those from AD. In support, fluorescence labelling showed binding of APN-1607 to intraneuronal inclusions in AD, PART and PCA. Knowledge of the binding modes of APN-1607 to tau filaments may lead to the development of new ligands with increased specificity and binding activity. We show that cryo-EM can be used to identify the binding sites of small molecules in amyloid filaments.


Subject(s)
Alzheimer Disease/pathology , Benzothiazoles/metabolism , Cryoelectron Microscopy/methods , Positron-Emission Tomography/methods , tau Proteins/ultrastructure , Aged , Aged, 80 and over , Binding Sites , Female , Fluorine Radioisotopes , Humans , Ligands , Male , Middle Aged , Radiopharmaceuticals/metabolism , tau Proteins/metabolism
12.
Adv Exp Med Biol ; 1281: 177-199, 2021.
Article in English | MEDLINE | ID: mdl-33433876

ABSTRACT

Filamentous inclusions of tau protein are found in cases of inherited and sporadic frontotemporal dementias (FTDs). Mutations in MAPT, the tau gene, cause approximately 5% of cases of FTD. They proved that dysfunction of tau protein is sufficient to cause neurodegeneration and dementia. Clinically and pathologically, cases with MAPT mutations can resemble sporadic diseases, such as Pick's disease, globular glial tauopathy, progressive supranuclear palsy and corticobasal degeneration. The structures of tau filaments from Pick's disease and corticobasal degeneration, determined by electron cryo-microscopy, revealed the presence of specific tau folds in each disease, with no inter-individual variation. The same was true of chronic traumatic encephalopathy.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Pick Disease of the Brain , Tauopathies , Frontotemporal Dementia/genetics , Humans , Tauopathies/genetics , tau Proteins/genetics
13.
Curr Opin Struct Biol ; 64: 17-25, 2020 10.
Article in English | MEDLINE | ID: mdl-32603876

ABSTRACT

Assembly of microtubule-associated protein tau into filamentous inclusions underlies many human neurodegenerative diseases, called tauopathies. Tau inclusions display distinct cellular and neuroanatomical distributions in different tauopathies. Morphological and biochemical differences suggest that tau filaments adopt disease-specific molecular conformers, similar to prion strains. Breakthroughs in electron cryo-microscopy have recently yielded atomic structures of tau filaments extracted from the brains of individuals with various tauopathies. Each disease is characterised by a unique tau filament fold, which is conserved among individuals with the same disease. In vitro aggregation yields different structures from those observed in brain. Tau isoform composition, post-translational modifications or interactions with cofactors may determine which structures are formed in brain. Understanding filament formation will be central to deciphering the molecular mechanisms that underlie human tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Brain/metabolism , Cryoelectron Microscopy , Humans , Protein Isoforms/metabolism , tau Proteins/metabolism
14.
Nature ; 580(7802): 283-287, 2020 04.
Article in English | MEDLINE | ID: mdl-32050258

ABSTRACT

Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances1-3. The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls4,5, and genome-wide association studies have identified additional risk factors6. By histology, astrocytic plaques are diagnostic of CBD7,8; by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau9. Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease10, CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats11-15. This distinguishes such '4R' tauopathies from Pick's disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer's disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)16. Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer's disease, Pick's disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.


Subject(s)
Basal Ganglia Diseases/pathology , Cerebral Cortex/pathology , Cryoelectron Microscopy , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/chemistry , tau Proteins/ultrastructure , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Basal Ganglia Diseases/metabolism , Brain Chemistry , Cerebral Cortex/metabolism , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Male , Middle Aged , Models, Molecular , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Protein Folding , tau Proteins/metabolism
15.
Nature ; 568(7752): 420-423, 2019 04.
Article in English | MEDLINE | ID: mdl-30894745

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that is associated with repetitive head impacts or exposure to blast waves. First described as punch-drunk syndrome and dementia pugilistica in retired boxers1-3, CTE has since been identified in former participants of other contact sports, ex-military personnel and after physical abuse4-7. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. CTE is defined by an abundance of hyperphosphorylated tau protein in neurons, astrocytes and cell processes around blood vessels8,9. This, together with the accumulation of tau inclusions in cortical layers II and III, distinguishes CTE from Alzheimer's disease and other tauopathies10,11. However, the morphologies of tau filaments in CTE and the mechanisms by which brain trauma can lead to their formation are unknown. Here we determine the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Å, using cryo-electron microscopy. We show that filament structures are identical in the three cases but are distinct from those of Alzheimer's and Pick's diseases, and from those formed in vitro12-15. Similar to Alzheimer's disease12,14,16-18, all six brain tau isoforms assemble into filaments in CTE, and residues K274-R379 of three-repeat tau and S305-R379 of four-repeat tau form the ordered core of two identical C-shaped protofilaments. However, a different conformation of the ß-helix region creates a hydrophobic cavity that is absent in tau filaments from the brains of patients with Alzheimer's disease. This cavity encloses an additional density that is not connected to tau, which suggests that the incorporation of cofactors may have a role in tau aggregation in CTE. Moreover, filaments in CTE have distinct protofilament interfaces to those of Alzheimer's disease. Our structures provide a unifying neuropathological criterion for CTE, and support the hypothesis that the formation and propagation of distinct conformers of assembled tau underlie different neurodegenerative diseases.


Subject(s)
Chronic Traumatic Encephalopathy , Cryoelectron Microscopy , Hydrophobic and Hydrophilic Interactions , Protein Folding , tau Proteins/chemistry , tau Proteins/ultrastructure , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Male , Models, Molecular
16.
Elife ; 82019 02 05.
Article in English | MEDLINE | ID: mdl-30720432

ABSTRACT

Assembly of microtubule-associated protein tau into filamentous inclusions underlies a range of neurodegenerative diseases. Tau filaments adopt different conformations in Alzheimer's and Pick's diseases. Here, we used cryo- and immuno- electron microscopy to characterise filaments that were assembled from recombinant full-length human tau with four (2N4R) or three (2N3R) microtubule-binding repeats in the presence of heparin. 2N4R tau assembles into multiple types of filaments, and the structures of three types reveal similar 'kinked hairpin' folds, in which the second and third repeats pack against each other. 2N3R tau filaments are structurally homogeneous, and adopt a dimeric core, where the third repeats of two tau molecules pack in a parallel manner. The heparin-induced tau filaments differ from those of Alzheimer's or Pick's disease, which have larger cores with different repeat compositions. Our results illustrate the structural versatility of amyloid filaments, and raise questions about the relevance of in vitro assembly.


Subject(s)
Heparin/metabolism , Multiprotein Complexes/metabolism , Protein Multimerization , tau Proteins/metabolism , Alzheimer Disease/pathology , Cryoelectron Microscopy , Humans , Microscopy, Immunoelectron , Multiprotein Complexes/ultrastructure , Pick Disease of the Brain/pathology , Protein Conformation
17.
Acta Neuropathol ; 136(5): 699-708, 2018 11.
Article in English | MEDLINE | ID: mdl-30276465

ABSTRACT

The ordered assembly of tau protein into abnormal filaments is a defining characteristic of Alzheimer's disease (AD) and other neurodegenerative disorders. It is not known if the structures of tau filaments vary within, or between, the brains of individuals with AD. We used a combination of electron cryo-microscopy (cryo-EM) and immuno-gold negative-stain electron microscopy (immuno-EM) to determine the structures of paired helical filaments (PHFs) and straight filaments (SFs) from the frontal cortex of 17 cases of AD (15 sporadic and 2 inherited) and 2 cases of atypical AD (posterior cortical atrophy). The high-resolution structures of PHFs and SFs from the frontal cortex of 3 cases of AD, 2 sporadic and 1 inherited, were determined by cryo-EM. We also used immuno-EM to study the PHFs and SFs from a number of cortical and subcortical brain regions. PHFs outnumbered SFs in all AD cases. By cryo-EM, PHFs and SFs were made of two C-shaped protofilaments with a combined cross-ß/ß-helix structure, as described previously for one case of AD. The higher resolution structures obtained here showed two additional amino acids at each end of the protofilament. The immuno-EM findings, which indicated the presence of repeats 3 and 4, but not of the N-terminal regions of repeats 1 and 2, of tau in the filament cores of all AD cases, were consistent with the cryo-EM results. These findings show that there is no significant variation in tau filament structures between individuals with AD. This knowledge will be crucial for understanding the mechanisms that underlie tau filament formation and for developing novel diagnostics and therapies.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , Neurofibrillary Tangles/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Apolipoproteins E/genetics , Brain/pathology , Brain/ultrastructure , Cryoelectron Microscopy , Female , Humans , Male , Microscopy, Immunoelectron , Middle Aged , Models, Anatomic , Mutation/genetics , Neurofibrillary Tangles/ultrastructure , Exome Sequencing , tau Proteins/ultrastructure
18.
Nature ; 561(7721): 137-140, 2018 09.
Article in English | MEDLINE | ID: mdl-30158706

ABSTRACT

The ordered assembly of tau protein into abnormal filamentous inclusions underlies many human neurodegenerative diseases1. Tau assemblies seem to spread through specific neural networks in each disease2, with short filaments having the greatest seeding activity3. The abundance of tau inclusions strongly correlates with disease symptoms4. Six tau isoforms are expressed in the normal adult human brain-three isoforms with four microtubule-binding repeats each (4R tau) and three isoforms that lack the second repeat (3R tau)1. In various diseases, tau filaments can be composed of either 3R or 4R tau, or of both. Tau filaments have distinct cellular and neuroanatomical distributions5, with morphological and biochemical differences suggesting that they may be able to adopt disease-specific molecular conformations6,7. Such conformers may give rise to different neuropathological phenotypes8,9, reminiscent of prion strains10. However, the underlying structures are not known. Using electron cryo-microscopy, we recently reported the structures of tau filaments from patients with Alzheimer's disease, which contain both 3R and 4R tau11. Here we determine the structures of tau filaments from patients with Pick's disease, a neurodegenerative disorder characterized by frontotemporal dementia. The filaments consist of residues Lys254-Phe378 of 3R tau, which are folded differently from the tau filaments in Alzheimer's disease, establishing the existence of conformers of assembled tau. The observed tau fold in the filaments of patients with Pick's disease explains the selective incorporation of 3R tau in Pick bodies, and the differences in phosphorylation relative to the tau filaments of Alzheimer's disease. Our findings show how tau can adopt distinct folds in the human brain in different diseases, an essential step for understanding the formation and propagation of molecular conformers.


Subject(s)
Pick Disease of the Brain/metabolism , Protein Folding , Tauopathies/metabolism , tau Proteins/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Brain/metabolism , Brain/pathology , Cryoelectron Microscopy , Humans , Models, Molecular , Phosphorylation , Pick Disease of the Brain/pathology , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Tauopathies/pathology , tau Proteins/metabolism , tau Proteins/ultrastructure
19.
ACS Chem Neurosci ; 9(6): 1276-1282, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29590529

ABSTRACT

The ordered assembly of amyloidogenic proteins causes a wide spectrum of common neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. These diseases share common features with prion diseases, in which misfolded proteins can self-replicate and transmit disease across different hosts. Deciphering the molecular mechanisms that underlie the amplification of aggregates is fundamental for understanding how pathological deposits can spread through the brain and drive disease. Here, we used single-molecule microscopy to study the assembly and replication of tau at the single aggregate level. We found that tau aggregates have an intrinsic ability to amplify by filament fragmentation, and determined the doubling times for this replication process by kinetic modeling. We then simulated the spreading time for aggregates through the brain and found this to be in good agreement with both the observed time frame for spreading of pathological tau deposits in Alzheimer's disease and in experimental models of tauopathies. With this work we begin to understand the physical parameters that govern the spreading rates of tau and other amyloids through the human brain.


Subject(s)
Cytoskeleton/metabolism , Prions/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Amyloid/metabolism , Brain/metabolism , Humans , Neurofibrillary Tangles/pathology
20.
Article in English | MEDLINE | ID: mdl-30886056

ABSTRACT

Tau filaments with distinct morphologies and/or isoform compositions underlie a large number of human neurodegenerative diseases. In conjunction with experimental studies, this has led to the suggestion that conformers of aggregated tau exist. Electron cryo-microscopy can be used to determine high-resolution structures of amyloid filaments from human brain. Paired helical and straight tau filaments of Alzheimer's disease (AD) are ultrastructural polymorphs. Each filament core is composed of two identical protofilaments extending from G273/304-E380 (in the numbering of the 441-amino acid isoform of human tau), which adopt a combined cross-ß/ß-helix structure. They comprise the ends of the first or second microtubule-binding repeat (R1 or R2), the whole of R3 and R4, and 12 amino acids after R4. In contrast, the core of the narrow filaments of Pick's disease (PiD) consists of a single protofilament extending from K254-F378 of 3R tau, which adopts a cross-ß structure. It comprises the last 21 amino acids of R1, all of R3 and R4, and 10 amino acids after R4. Wide tau filaments of PiD, which are in the minority, consist of two narrow filaments packed against each other. The tau filament folds of AD and PiD appear to be conserved between different cases of disease. These findings show that filamentous tau adopts one fold in AD and a different fold in PiD, establishing the existence of distinct conformers.

SELECTION OF CITATIONS
SEARCH DETAIL
...