Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: mdl-34250905

ABSTRACT

Pathophysiological defects in water homeostasis can lead to renal failure. Likewise, common genetic disorders associated with abnormal cytoskeletal dynamics in the kidney collecting ducts and perturbed calcium and cAMP signaling in the ciliary compartment contribute to chronic kidney failure. We show that collecting ducts in mice lacking the A-Kinase anchoring protein AKAP220 exhibit enhanced development of primary cilia. Mechanistic studies reveal that AKAP220-associated protein phosphatase 1 (PP1) mediates this phenotype by promoting changes in the stability of histone deacetylase 6 (HDAC6) with concomitant defects in actin dynamics. This proceeds through a previously unrecognized adaptor function for PP1 as all ciliogenesis and cytoskeletal phenotypes are recapitulated in mIMCD3 knock-in cells expressing a phosphatase-targeting defective AKAP220-ΔPP1 mutant. Pharmacological blocking of local HDAC6 activity alters cilia development and reduces cystogenesis in kidney-on-chip and organoid models. These findings identify the AKAP220-PPI-HDAC6 pathway as a key effector in primary cilia development.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cilia/metabolism , Histone Deacetylase 6/metabolism , Homeostasis , Kidney/metabolism , Protein Phosphatase 1/metabolism , Actins/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , HEK293 Cells , Histone Deacetylase Inhibitors/pharmacology , Humans , Kidney Tubules, Collecting , Mice , Organoids/metabolism , Signal Transduction/drug effects
2.
Eur J Med Chem ; 154: 233-252, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29803996

ABSTRACT

Fatty acid binding proteins (FABPs) serve as critical modulators of endocannabinoid signaling by facilitating the intracellular transport of anandamide and whose inhibition potentiates anandamide signaling. Our previous work has identified a novel small-molecule FABP inhibitor, α-truxillic acid 1-naphthyl monoester (SB-FI-26, 3) that has shown efficacy as an antinociceptive and anti-inflammatory agent in rodent models. In the present work, we have performed an extensive SAR study on a series of 3-analogs as novel FABP inhibitors based on computer-aided inhibitor drug design and docking analysis, chemical synthesis and biological evaluations. The prediction of binding affinity of these analogs to target FABP3, 5 and 7 isoforms was performed using the AutoDock 4.2 program, using the recently determined co-crystal structures of 3 with FABP5 and FABP7. The compounds with high docking scores were synthesized and evaluated for their activities using a fluorescence displacement assay against FABP3, 5 and 7. During lead optimization, compound 3l emerged as a promising compound with the Ki value of 0.21 µM for FABP 5, 4-fold more potent than 3 (Ki, 0.81 µM). Nine compounds exhibit similar or better binding affinity than 3, including compounds 4b (Ki, 0.55 µM) and 4e (Ki, 0.68 µM). Twelve compounds are selective for FABP5 and 7 with >10 µM Ki values for FABP3, indicating a safe profile to avoid potential cardiotoxicity concerns. Compounds 4f, 4j and 4k showed excellent selectivity for FABP5 and would serve as other new lead compounds. Compound 3a possessed high affinity and high selectivity for FABP7. Compounds with moderate to high affinity for FABP5 displayed antinociceptive effects in mice while compounds with low FABP5 affinity lacked in vivo efficacy. In vivo pain model studies in mice revealed that exceeding hydrophobicity significantly affects the efficacy. Thus, among the compounds with high affinity to FABP5 in vitro, the compounds with moderate hydrophobicity were identified as promising new lead compounds for the next round of optimization, including compounds 4b and 4j. For select cases, computational analysis of the observed SAR, especially the selectivity of new inhibitors to particular FABP isoforms, by comparing docking poses, interaction map, and docking energy scores has provided useful insights.


Subject(s)
Analgesics/pharmacology , Cyclobutanes/pharmacology , Esters/pharmacology , Fatty Acid-Binding Proteins/antagonists & inhibitors , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Computer-Aided Design , Cyclobutanes/chemical synthesis , Cyclobutanes/chemistry , Dose-Response Relationship, Drug , Drug Design , Esters/chemical synthesis , Esters/chemistry , Fatty Acid-Binding Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
3.
J Biol Chem ; 293(14): 5295-5306, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29440395

ABSTRACT

Fatty acid-binding proteins (FABPs) are intracellular lipid carriers that regulate inflammation, and pharmacological inhibition of FABP5 reduces inflammation and pain. The mechanism(s) underlying the anti-inflammatory effects associated with FABP5 inhibition is poorly understood. Herein, we identify a novel mechanism through which FABP5 modulates inflammation. In mice, intraplantar injection of carrageenan induces acute inflammation that is accompanied by edema, enhanced pain sensitivity, and elevations in proinflammatory cytokines and prostaglandin E2 (PGE2). Inhibition of FABP5 reduced pain, edema, cytokine, and PGE2 levels. PGE2 is a major eicosanoid that enhances pain in the setting of inflammation, and we focused on the mechanism(s) through which FABP5 modulates PGE2 production. Cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1) are enzymes up-regulated at the site of inflammation and account for the bulk of PGE2 biosynthesis. Pharmacological or genetic FABP5 inhibition suppressed the induction of mPGES-1 but not COX-2 in carrageenan-injected paws, which occurred predominantly in macrophages. The cytokine interleukin 1ß (IL-1ß) is a major inducer of mPGES-1 during inflammation. Using A549 cells that express FABP5, IL-1ß stimulation up-regulated mPGES-1 expression, and mPGES-1 induction was attenuated in A549 cells bearing a knockdown of FABP5. IL-1ß up-regulates mPGES-1 via NF-κB, which activates the mPGES-1 promoter. Knockdown of FABP5 reduced the activation and nuclear translocation of NF-κB and attenuated mPGES-1 promoter activity. Deletion of NF-κB-binding sites within the mPGES-1 promoter abrogated the ability of FABP5 to inhibit mPGES-1 promoter activation. Collectively, these results position FABP5 as a novel regulator of mPGES-1 induction and PGE2 biosynthesis during inflammation.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Prostaglandin-E Synthases/metabolism , A549 Cells , Animals , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dinoprostone/metabolism , Fatty Acid-Binding Proteins/genetics , Humans , Inflammation/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microsomes/metabolism , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , THP-1 Cells , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...