Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 43(2): 250-276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177505

ABSTRACT

Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.


Subject(s)
Peptides , Ubiquitin-Activating Enzymes , Ubiquitin , Humans , Animals , Mice , Ubiquitination , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Mutation
2.
Stem Cell Res ; 64: 102899, 2022 10.
Article in English | MEDLINE | ID: mdl-36044808

ABSTRACT

Phelan-McDermid syndrome (PMS) is a rare genetic condition that causes global developmental disability, delayed or absent speech, and an autism spectrum disorder. The loss of function of one copy of SHANK3, which codes for a scaffolding protein found in the postsynaptic density of synapses, has been identified as the main cause of PMS. We report the generation and characterization of two induced pluripotent stem cell (iPSC) lines derived from one patient with a SHANK3 mutation and the patient's mother as a control. Both lines expressed pluripotency markers, differentiated into the three germ layers, retained the disease-causing mutation, and displayed normal karyotypes.


Subject(s)
Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Humans , Female , Autism Spectrum Disorder/genetics , Mothers , Nerve Tissue Proteins/genetics , Mutation/genetics
3.
Stem Cell Res ; 48: 101955, 2020 10.
Article in English | MEDLINE | ID: mdl-32822965

ABSTRACT

Congenital central hypoventilation syndrome (CCHS) is a rare life-threatening condition affecting the autonomic nervous system that usually presents shortly after birth as hypoventilation or central apnea during sleep. In the majority of cases, heterozygous polyalanine expansion mutations within the third exon of the paired-like homeobox 2B (PHOX2B) gene underlie CCHS. Here, we report the generation of two induced pluripotent stem cell (iPSC) lines from two identical twins with a heterozygous PHOX2B expansion mutation (+5 alanine residues). Both generated lines highly express pluripotency markers, can differentiate into the three germ layers, retain the disease-causing mutation and display normal karyotypes.


Subject(s)
Homeodomain Proteins , Induced Pluripotent Stem Cells , Transcription Factors , Cell Line , Genes, Homeobox , Homeodomain Proteins/genetics , Humans , Mutation , Peptides , Twins, Monozygotic
SELECTION OF CITATIONS
SEARCH DETAIL
...