Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 21(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34695965

ABSTRACT

Effective ocean management requires integrated and sustainable ocean observing systems enabling us to map and understand ecosystem properties and the effects of human activities. Autonomous subsurface and surface vehicles, here collectively referred to as "gliders", are part of such ocean observing systems providing high spatiotemporal resolution. In this paper, we present some of the results achieved through the project "Unmanned ocean vehicles, a flexible and cost-efficient offshore monitoring and data management approach-GLIDER". In this project, three autonomous surface and underwater vehicles were deployed along the Lofoten-Vesterålen (LoVe) shelf-slope-oceanic system, in Arctic Norway. The aim of this effort was to test whether gliders equipped with novel sensors could effectively perform ecosystem surveys by recording physical, biogeochemical, and biological data simultaneously. From March to September 2018, a period of high biological activity in the area, the gliders were able to record a set of environmental parameters, including temperature, salinity, and oxygen, map the spatiotemporal distribution of zooplankton, and record cetacean vocalizations and anthropogenic noise. A subset of these parameters was effectively employed in near-real-time data assimilative ocean circulation models, improving their local predictive skills. The results presented here demonstrate that autonomous gliders can be effective long-term, remote, noninvasive ecosystem monitoring and research platforms capable of operating in high-latitude marine ecosystems. Accordingly, these platforms can record high-quality baseline environmental data in areas where extractive activities are planned and provide much-needed information for operational and management purposes.


Subject(s)
Ecosystem , Salinity , Humans , Oceans and Seas
2.
Biomolecules ; 10(3)2020 02 28.
Article in English | MEDLINE | ID: mdl-32121136

ABSTRACT

The seasonal dynamic of lipids and their fatty acid constituents in the lipid sac and muscles of pelagic postlarval Leptoclinus maculatus, an ecologically important fish species in the Arctic food nets, in Kongsfjord, Svalbard waters was studied. The determination of the qualitative and quantitative content of the total lipids (TLs), total phospholipids (PLs), triacylglycerols (TAGs), cholesterol (Chol), cholesterol esters (Chol esters) and wax esters was analyzed by TLC, the phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) were determined by HPLC, and fatty acids of total lipids using GC. The lipid sac is a system of cavities filled with lipids, and it is not directly connected to organs of the digestive system. The wall's inner layer is a multinuclear symplast that has a trophic function. The results provide additional knowledge on the role of lipids in the biochemical and physiological adaptation of fish to specific environments and clarify the relationship between fatty acids and the food specialization of postlarvae. Analysis of the fatty acid (FA) profile of TLs in the muscles and lipid sac of daubed shanny pelagic postlarvae showed it to be tissue- and organ-specific, and tightly associated with seasonal variations of environmental factors (temperature conditions and trophic resources).


Subject(s)
Fatty Acids/analysis , Lipids/analysis , Perciformes/physiology , Acclimatization , Animals , Fatty Acids/metabolism , Lipid Metabolism , Seasons , Svalbard
3.
Sci Rep ; 9(1): 686, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679810

ABSTRACT

Zooplankton provide the key link between primary production and higher levels of the marine food web and they play an important role in mediating carbon sequestration in the ocean. All commercially harvested fish species depend on zooplankton populations. However, spatio-temporal distributions of zooplankton are notoriously difficult to quantify from ships. We know that zooplankton can form large aggregations that visibly change the color of the sea, but the scale and mechanisms producing these features are poorly known. Here we show that large surface patches (>1000 km2) of the red colored copepod Calanus finmarchicus can be identified from satellite observations of ocean color. Such observations provide the most comprehensive view of the distribution of a zooplankton species to date, and alter our understanding of the behavior of this key zooplankton species. Moreover, our findings suggest that high concentrations of astaxanthin-rich zooplankton can degrade the performance of standard blue-green reflectance ratio algorithms in operational use for retrieving chlorophyll concentrations from ocean color remote sensing.


Subject(s)
Copepoda/physiology , Remote Sensing Technology/methods , Zooplankton , Animals , Chlorophyll , Color , Environmental Monitoring/methods , Norway , Satellite Imagery , Xanthophylls
4.
Mar Environ Res ; 141: 275-288, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30249455

ABSTRACT

Due to retreating sea ice and predictions of undiscovered oil and gas resources, increased activity in Arctic shelf sea areas associated with shipping and oil and gas exploration is expected. Such activities may accidentally lead to oil spills in partly ice-covered ocean areas, which raises issues related to oil spill response. Net Environmental Benefit Analysis (NEBA) is the process that the response community uses to identify which combination of response strategies minimises the impact to environment and people. The vulnerability of Valued Ecosystem Components (VEC's) to oil pollution depends on their sensitivity to oil and the likelihood that they will be exposed to oil. As such, NEBA requires a good ecological knowledge base on biodiversity, species' distributions in time and space, and timing of ecological events. Biological resources found at interfaces (e.g., air/water, ice/water or water/coastline) are in general vulnerable because that is where oil can accumulate. Here, we summarize recent information about the seasonal, physical and ecological processes in Arctic waters and evaluate the importance these processes when considering in oil spill response decision making through NEBA. In spring-time, many boreal species conduct a lateral migration northwards in response to sea ice retraction and increased production associated with the spring bloom. However, many Arctic species, including fish, seabirds and marine mammals, are present in upper water layers in the Arctic throughout the year, and recent research has demonstrated that bioactivity during the Arctic winter is higher than previously assumed. Information on the seasonal presence/absence of less resilient VEC's such as marine mammals and sea birds in combination with the presence/absence of sea ice seems to be especially crucial to consider in a NEBA. In addition, quantification of the potential impact of different, realistic spill sizes on the energy cascade following the spring bloom at the ice-edge would provide important information for assessing ecosystem effects.


Subject(s)
Decision Making , Ecosystem , Ice Cover , Animals , Arctic Regions , Environmental Monitoring , Oceans and Seas , Seasons
5.
Mar Environ Res ; 141: 264-274, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30249456

ABSTRACT

For oil spill responses, assessment of the potential environmental exposure and impacts of a spill is crucial. Due to a lack of chronic toxicity data, acute data is used together with precautionary assumptions. The effect on the Arctic keystone (copepod) species Calanus hyperboreus and Calanus glacialis populations is compared using two approaches: a precautionary approach where all exposed individuals die above a defined threshold concentration and a refined (full-dose-response) approach. For this purpose a matrix population model parameterised with data from the literature is used. Population effects of continuous exposures with varying durations were modelled on a range of concentrations. Just above the chronic No Observed Effect Concentration (which is field relevant) the estimated population recovery duration of the precautionary approach was more than 300 times that of the refined approach. With increasing exposure concentration and duration, the effect in the refined approach converges to the maximum effect assumed in the precautionary approach.


Subject(s)
Copepoda , Models, Theoretical , Petroleum Pollution , Water Pollutants, Chemical , Animals , Arctic Regions , Ecology , Water Pollutants, Chemical/toxicity
6.
Curr Biol ; 25(19): 2555-61, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26412132

ABSTRACT

The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].


Subject(s)
Biodiversity , Ecosystem , Global Warming , Animals , Arctic Regions , Seasons
7.
PLoS One ; 10(6): e0126247, 2015.
Article in English | MEDLINE | ID: mdl-26039111

ABSTRACT

The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 µmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.


Subject(s)
Light , Models, Biological , Oceans and Seas , Zooplankton/physiology , Animals , Arctic Regions
8.
J Plankton Res ; 36(5): 1279-1297, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25221372

ABSTRACT

Diel vertical migration (DVM) of zooplankton is a global phenomenon, characteristic of both marine and limnic environments. At high latitudes, patterns of DVM have been documented, but rather little knowledge exists regarding which species perform this ecologically important behaviour. Also, in the Arctic, the vertically migrating components of the zooplankton community are usually regarded as a single sound scattering layer (SSL) performing synchronized patterns of migration directly controlled by ambient light. Here, we present evidence for hitherto unknown complexity of Arctic marine systems, where zooplankton form multiple aggregations through the water column seen via acoustics as distinct SSLs. We show that while the initiation of DVM during the autumnal equinox is light mediated, the vertical positioning of the migrants during day is linked more to the thermal characteristics of water masses than to irradiance. During night, phytoplankton biomass is shown to be the most important factor determining the vertical positioning of all migrating taxa. Further, we develop a novel way of representing acoustic data in the form of a Sound Image (SI) that enables a direct comparison of the relative importance of each potential scatterer based upon the theoretical contribution of their backscatter. Based on our comparison of locations with contrasting hydrography, we conclude that a continued warming of the Arctic is likely to result in more complex ecotones across the Arctic marine system.

9.
PLoS One ; 9(3): e92935, 2014.
Article in English | MEDLINE | ID: mdl-24667529

ABSTRACT

Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex) are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12-15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea), Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea), and Calanus glacialis C5 (Arctic). We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy.


Subject(s)
Copepoda/metabolism , Lipid Metabolism , Animals , Arctic Regions , Copepoda/growth & development , Female , Life Cycle Stages , Male , Oceanography , Population Density , Seawater , Sex Factors , Temperature , Tropical Climate
10.
Int J Mol Sci ; 14(4): 7048-60, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23535338

ABSTRACT

A comparative study of the lipid status (i.e., the total lipid and phospholipid concentrations and the percentage of fatty acids of the total lipids) of adult specimens of daubed shanny (Leptoclinus maculatus) from Svalbard waters (Isfjord) and slender eel blenny (Lumpenus fabricii) from the White Sea (Onega Bay and Tersky shore) was performed to study the metabolism and functions of lipids of these fishes in ontogeny and under various ecological conditions. Slender eel blenny from both areas of the White Sea were distinguished by a high level of sphingomyelin compared with the daubed shanny from Svalbard, and the amount of total phospholipids was higher in slender eel blenny from Onega Bay than in slender eel blenny from the Tersky shore. The extent of saturation and the signature of polyenic fatty acids varied according to the specific species of the Stichaeidae family under study. These results demonstrate the differences in the trophoecological and hydrobiological conditions of habitations of these species and highlighted the importance of considering certain trends in the lipid profiles of these fishes as specific features of the organization of the ecological and biochemical mechanisms of adaptation.


Subject(s)
Altitude , Lipid Metabolism , Perciformes/metabolism , Animals , Cholesterol/metabolism , Fatty Acids/metabolism , Female , Norway , Phospholipids/metabolism , Triglycerides/metabolism
11.
Fish Physiol Biochem ; 38(5): 1393-407, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22437369

ABSTRACT

Oocyte and liver histomorphology of the daubed shanny (Leptoclinus maculatus) from Isfjorden and Kongsfjorden in Svalbard were investigated during three Arctic seasons: summer (July), autumn (October) and winter (April). Three oocyte developmental phases were observed: primary growth phase, secondary growth phase and maturation phase. We observed four different developmental stages: (1) perinucleolus stage with cortical alveolus formation, (2) lipid droplets formation, (3) vitellogenesis stage and (4) maturation. Late maturation stage of oocytes in the ovaries was from the autumn season. Females accumulated lipids in liver (up to 35.2 % dw) and deposited large amounts of lipids into gonads (up to 52.2 % dw) during maturation. Lipid classes in female gonads changed seasonally, with relative increase in cholesterol during summer and depletion of storage lipids (triacylglycerols and wax esters/cholesterol esters) during the winter. Lipid composition in liver changed during oocyte development and spawning, as neutral lipids were transferred to developing oocytes during summer to autumn. During winter, storage lipids were depleted during starvation. Based on the increase in gonadosomatic index (GSI) with length and observed maturation stages, females seem to mature at a length of about 125-130 mm. The GSI and hepatosomatic index of large females sampled in autumn (September-October) were significantly higher than for females in late winter (April) and spring (May). These results indicate that spawning takes place during winter in Isfjorden and that energy reserves stored in the liver are utilized by females during gonadal development and reproduction.


Subject(s)
Lipids/chemistry , Liver/chemistry , Oogenesis/physiology , Ovary/chemistry , Animals , Arctic Regions , Female , Oceans and Seas , Perciformes , Seasons , Water Pollution
12.
J Plankton Res ; 32(10): 1471-1477, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20824043

ABSTRACT

We present an accurate, fast, simple and non-destructive photographic method to estimate wax ester and lipid content in single individuals of the calanoid copepod genus Calanus and test this method against gas-chromatographic lipid measurements.

13.
Biol Lett ; 5(1): 69-72, 2009 Feb 23.
Article in English | MEDLINE | ID: mdl-18948249

ABSTRACT

High-latitude environments show extreme seasonal variation in physical and biological variables. The classic paradigm of Arctic marine ecosystems holds that most biological processes slow down or cease during the polar night. One key process that is generally assumed to cease during winter is diel vertical migration (DVM) of zooplankton. DVM constitutes the largest synchronized movement of biomass on the planet, and is of paramount importance for marine ecosystem function and carbon cycling. Here we present acoustic data that demonstrate a synchronized DVM behaviour of zooplankton that continues throughout the Arctic winter, in both open and ice-covered waters. We argue that even during the polar night, DVM is regulated by diel variations in solar and lunar illumination, which are at intensities far below the threshold of human perception. We also demonstrate that winter DVM is stronger in open waters compared with ice-covered waters. This suggests that the biologically mediated vertical flux of carbon will increase if there is a continued retreat of the Arctic winter sea ice cover.


Subject(s)
Animal Migration , Circadian Rhythm , Zooplankton/physiology , Animals , Arctic Regions , Ecosystem , Seasons
14.
Environ Toxicol Chem ; 25(9): 2502-11, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16986806

ABSTRACT

Concentrations of brominated flame retardants (BFRs), including polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD), were investigated in an arctic marine food chain consisting of four invertebrate species: polar cod (Boreogadus saida), ringed seals (Pusa hispida), and polar bears (Ursus maritimus). The most abundant BFR, brominated diphenyl ether (BDE)-47, was found in detectable concentrations even in zooplankton, the lowest trophic level examined in this study. Most of the investigated BFRs biomagnified as function of tropic level in the food chain. A noticeable exception occurred at the highest trophic level, the polar bear, in which only BDE-153 was found to increase from its main prey, the ringed seal, indicating that polar bears appear to be able to metabolize and biodegrade most BFRs. In contrast, lower-brominated PBDEs, particularly BDE-47, showed clear signs of bioaccumulation in zooplankton, polar cod, and ringed seals. We suggest that this discrepancy in the fate of BFRs among the different species may be related to greater induction of oxidative detoxification activities in the polar bear. Absorption and debromination rates may be more important for bioaccumulation rates of BFRs in zooplankton, polar cod, and ringed seals. Lipid weight-based concentrations (LWCs) and whole body-based concentrations (WBCs) of BFRs were used to assess biomagnification factors (BMFs). Whole-body concentrations gave the most realistic BMFs, as BMFs derived from LWCs seem to be confounded by the large variability in lipid content of tissues from the investigated species. This study demonstrates that PBDEs and HBCD have reached measurable concentrations even in the lower trophic levels (invertebrates and fish) in the Arctic and biomagnifies in the polar bear food chain.


Subject(s)
Flame Retardants/analysis , Food Chain , Hydrocarbons, Brominated/analysis , Polybrominated Biphenyls/analysis , Ursidae/physiology , Animals , Gadiformes/metabolism , Hydrocarbons, Brominated/metabolism , Invertebrates/chemistry , Norway , Phoca/metabolism , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...