Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 17(7): 954-7, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26756452

ABSTRACT

Phytochromes constitute a superfamily of photoreceptor proteins existing in two forms that absorb red (Pr) and far-red (Pfr) light. Although it is well-known that the conversion of Pr into Pfr (the biologically active form) is triggered by a Z→E photoisomerization of the linear tetrapyrrole chromophore, direct evidence is scarce as to why this reaction always occurs at the methine bridge between pyrrole rings C and D. Here, we present hybrid quantum mechanics/molecular mechanics calculations based on a high-resolution Pr crystal structure of Deinococcus radiodurans bacteriophytochrome to investigate the competition between all possible photoisomerizations at the three different (AB, BC and CD) methine bridges. The results demonstrate that steric interactions with the protein are a key discriminator between the different reaction channels. In particular, it is found that such interactions render photoisomerizations at the AB and BC bridges much less probable than photoisomerization at the CD bridge.


Subject(s)
Phytochrome/chemistry , Deinococcus , Isomerism , Models, Chemical , Molecular Structure , Quantum Theory
2.
J Phys Chem A ; 119(49): 11911-21, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26565664

ABSTRACT

Electronic transitions from one excited state to another excited state of different spin symmetry play important roles in many biochemical reactions. Although recent years have seen much progress in the elucidation of nonradiative (intersystem crossing) relaxation mechanisms for such transitions, there is presently a scarcity of data available to assess whether also radiative (phosphorescence) mechanisms are relevant for these processes. Here, we demonstrate that the well-established ability of quantum chemical methods to describe intersystem crossing events between excited states can be supplemented by the ability to also describe inter-excited-state phosphorescence. Specifically, by performing four-component relativistic time-dependent density functional theory calculations, we obtain rate constants for the radiative transitions from the absorbing (1)(πHπL*) singlet state of lumiflavin to the (3)(πHπL*), (3)(nN2πL*), and (3)(πH-1πL*) triplet states, and subsequently, we compare these results with rate constants calculated for the corresponding nonradiative transitions. Thereby, it is found that the radiative rate constants for these particular transitions are typically 2 to 5 orders of magnitude smaller than the nonradiative ones.


Subject(s)
Flavins/chemistry , Quantum Theory , Molecular Structure
3.
Phys Chem Chem Phys ; 17(26): 16723-32, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-25797168

ABSTRACT

The chemical basis of the blue-black to pink-orange color change on cooking of lobster, due to thermal denaturation of an astaxanthin-protein complex, α-crustacyanin, in the lobster carapace, has so far been elusive. Here, we investigate the relaxation of the astaxanthin pigment from its bound enolate form to its neutral hydroxyketone form, as origin of the spectral shift, by analyzing the response of UV-vis spectra of a water-soluble 3-hydroxy-4-oxo-ß-ionone model of astaxanthin to increases in pH, and by performing extensive quantum chemical calculations over a wide range of chemical conditions. The enolization of astaxanthin is consistent with the X-ray diffraction data of ß-crustacyanin (PDB code: ) whose crystals possess the distinct blue color. We find that enolate formation is possible within the protein environment and associated with a large bathochromic shift, thus offering a cogent explanation for the blue-black color and the response to thermal denaturation and revealing the chemistry of astaxanthin upon complex formation.


Subject(s)
Animal Shells/metabolism , Carrier Proteins/metabolism , Color , Nephropidae , Animal Shells/chemistry , Animals , Carrier Proteins/chemistry , Hydrogen-Ion Concentration , Kinetics , Molecular Conformation , Quantum Theory , Thermodynamics , Xanthophylls/chemistry , Xanthophylls/metabolism
4.
J Comput Chem ; 35(30): 2184-94, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25226816

ABSTRACT

Although recent years have seen much progress in the elucidation of the mechanisms underlying the bioluminescence of fireflies, there is to date no consensus on the precise contributions to the light emission from the different possible forms of the chemiexcited oxyluciferin (OxyLH2) cofactor. Here, this problem is investigated by the calculation of excited-state equilibrium constants in aqueous solution for keto-enol and acid-base reactions connecting six neutral, monoanionic and dianionic forms of OxyLH2. Particularly, rather than relying on the standard Förster equation and the associated assumption that entropic effects are negligible, these equilibrium constants are for the first time calculated in terms of excited-state free energies of a Born-Haber cycle. Performing quantum chemical calculations with density functional theory methods and using a hybrid cluster-continuum approach to describe solvent effects, a suitable protocol for the modeling is first defined from benchmark calculations on phenol. Applying this protocol to the various OxyLH2 species and verifying that available experimental data (absorption shifts and ground-state equilibrium constants) are accurately reproduced, it is then found that the phenolate-keto-OxyLH(-) monoanion is intrinsically the preferred form of OxyLH2 in the excited state, which suggests a potential key role for this species in the bioluminescence of fireflies.


Subject(s)
Indoles/chemistry , Pyrazines/chemistry , Quantum Theory , Animals , Fireflies , Indoles/chemical synthesis , Molecular Structure , Pyrazines/chemical synthesis
5.
J Comput Chem ; 34(16): 1363-74, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23456980

ABSTRACT

Phytochromes constitute one of the six well-characterized families of photosensory proteins in Nature. From the viewpoint of computational modeling, however, phytochromes have been the subject of much fewer studies than most other families of photosensory proteins, which is likely a consequence of relevant high-resolution structural data becoming available only in recent years. In this work, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are used to calculate UV-vis absorption spectra of Deinococcus radiodurans bacteriophytochrome. We investigate how the choice of QM/MM methodology affects the resulting spectra and demonstrate that QM/MM methods can reproduce the experimental absorption maxima of both the Q and Soret bands with an accuracy of about 0.15 eV. Furthermore, we assess how the protein environment influences the intrinsic absorption of the bilin chromophore, with particular focus on the Q band underlying the primary photochemistry of phytochromes.


Subject(s)
Bacterial Proteins/chemistry , Computer Simulation , Phytochrome/chemistry , Quantum Theory , Deinococcus/chemistry , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL