Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Front Epidemiol ; 4: 1309149, 2024.
Article in English | MEDLINE | ID: mdl-38577653

ABSTRACT

Background: With growing use of parasitological tests to detect malaria and decreasing incidence of the disease in Africa; it becomes necessary to increase the understanding of causes of non-malaria acute febrile illness (NMAFI) towards providing appropriate case management. This research investigates causes of NMAFI in pediatric out-patients in rural Guinea-Bissau. Methods: Children 0-5 years presenting acute fever (≥38°) or history of fever, negative malaria rapid diagnostic test (mRDT) and no signs of specific disease were recruited at the out-patient clinic of 3 health facilities in Bafatá province during 54 consecutive weeks (dry and rainy season). Medical history was recorded and blood, nasopharyngeal, stool and urine samples were collected and tested for the presence of 38 different potential aetiological causes of fever. Results: Samples from 741 children were analysed, the protocol was successful in determining a probable aetiological cause of acute fever in 544 (73.61%) cases. Respiratory viruses were the most frequently identified pathogens, present in the nasopharynx samples of 435 (58.86%) cases, followed by bacteria detected in 167 (22.60%) samples. Despite presenting negative mRDTs, P. falciparum was identified in samples of 24 (3.25%) patients. Conclusions: This research provides a description of the aetiological causes of NMAFI in West African context. Evidence of viral infections were more commonly found than bacteria or parasites.

2.
Article in English | MEDLINE | ID: mdl-38627964

ABSTRACT

OBJECTIVE: Crimean-Congo haemorrhagic fever (CCHF) is a severe zoonotic arboviral disease that occurs widely in Eastern and Western Europe, Asia and Africa. The disease is becoming of growing public health importance in Senegal. However, analysis of tick infestation, CCHF virus (CCHFV) circulation extent and risk factors during ongoing outbreak are scarce. A thorough outbreak investigation was carried out during a CCHF outbreak in Podor (Northern Senegal) in August 2022. METHODS: Ticks and blood samples were collected from animals (cattle, goats and sheep) randomly selected from confirmed CCHF human cases houses, neighbourhoods and surrounding villages. Blood samples were tested for CCHFV antibodies using a commercial enzyme-linked immunosorbent assay (ELISA) test. Tick samples were screened for CCHFV RNA by RT-PCR. RESULTS: Overall, tick infestation rate (TIR) and CCHFV seroprevalence of livestock were 52.12% (95% confidence interval (CI): 45.54%-58.64%) and 43.28% (95% CI: 36.33%-50.44%), respectively. The TIRs were 87.7% in cattle, 57.6% in sheep and 20.0% in goats. These rates were significantly associated with location, host species and tick control (p < 0.001) but not with animal age and sex (p > 0.7). CCHFV seroprevalence was 80.4% (95% CI: 67.57%-89.77%) in cattle, 35.4% (95% CI: 25.00%-47.01%) in sheep and 21.2% (95% CI: 12.11%-33.02%) in goats. Age, sex, location, animal host and presence of ticks were significantly associated to the presence of antibodies. The 950 ticks collected included among other species, Hyalomma impeltatum (48.84%) and H. rufipes (10.21%). Five pools of Hyalomma ssp. were found CCHFV RT-PCR positive. These infected ticks included 0.86% (4/464) of H. impeltatum collected on cattle and sheep and 1.03% (1/97) of H. rufipes collected on a sheep. CONCLUSIONS: To our knowledge, this is the first report on the extend of tick infestation and CCHFV infection in livestock during an outbreak in Senegal. The results highlight the risk of human infections and the importance of strengthening vector, animal and human surveillance as well as tick control measures in this area to prevent CCHF infections in humans.

3.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526209

ABSTRACT

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Senegal/epidemiology , Serogroup , Environment , Dengue/epidemiology
4.
Viruses ; 16(2)2024 02 19.
Article in English | MEDLINE | ID: mdl-38400090

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF), the most widespread tick-borne viral human infection, poses a threat to global health. In this study, clinical samples collected through national surveillance systems were screened for acute CCHF virus (CCHFV) infection using RT-PCR and for exposure using ELISA. For any CCHF-positive sample, livestock and tick samples were also collected in the neighborhood of the confirmed case and tested using ELISA and RT-PCR, respectively. Genome sequencing and phylogenetic analyses were also performed on samples with positive RT-PCR results. In Eastern Senegal, two human cases and one Hyalomma tick positive for CCHF were identified and a seroprevalence in livestock ranging from 9.33% to 45.26% was detected. Phylogenetic analyses revealed that the human strain belonged to genotype I based on the available L segment. However, the tick strain showed a reassortant profile, with the L and M segments belonging to genotype I and the S segment belonging to genotype III. Our data also showed that our strains clustered with strains isolated in different countries, including Mauritania. Therefore, our findings confirmed the high genetic variability inside the CCHF genotypes and their introduction to Senegal from other countries. They also indicate an increasing CCHF threat in Senegal and emphasize the need to reinforce surveillance using a one-health approach.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ticks , Animals , Humans , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/epidemiology , Phylogeny , Seroepidemiologic Studies , Senegal/epidemiology , Livestock
5.
Trop Med Infect Dis ; 9(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38393121

ABSTRACT

Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.

6.
medRxiv ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38106224

ABSTRACT

The Chikungunya virus, a global arbovirus, is currently causing a major outbreak in the Western African region, with the highest cases reported in Senegal and Burkina Faso. Recent molecular evolution analyses reveal that the strain responsible for the epidemic belongs to the West African genotype, with new mutations potentially impacting viral replication, antigenicity, and host adaptation. Real-time genomic monitoring is needed to track the virus's spread in new regions. A scalable West African genotype amplicon-based Whole Genome Sequencing for multiple Next Generation Sequencing platforms has been developed to support genomic investigations and identify epidemiological links during the virus's ongoing spread. This technology will help identify potential threats and support real-time genomic investigations in the ongoing spread of the virus.

7.
Sci Rep ; 13(1): 20404, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37990112

ABSTRACT

In 2022, many regions around the world experienced a severe respiratory syncytial virus (RSV) epidemic with an earlier-than-usual start and increased numbers of paediatric patients in emergency departments. Here we carried out this study to describe the epidemiology and genetic characteristics of RSV infection in patients hospitalized with severe acute respiratory infections in 2022. Samples were tested for RSV by multiplex real time reverse transcription polymerase chain reaction. Subsequently, a subset of RSV positive samples was selected for NGS sequencing. RSV was detected in 16.04%, among which RSV-A was confirmed in 7.5% and RSV-B in 76.7%. RSV infection were more identified in infants aged ≤ 11 months (83.3%) and a shift in the circulation pattern was observed, with highest incidences between September-November. Phylogenetic analyses revealed that all RSV-A strains belonged to GA2.3.5 genotype and all RSV-B strains to GB5.0.5a genotype. Three putative N-glycosylation sites at amino acid positions 103, 135, 237 were predicted among RSV-A strains, while four N-linked glycosylation sites at positions 81, 86, 231 and 294 were identified in RSV-B strains. Globally, our findings reveal an exclusive co-circulation of two genetic lineages of RSV within the pediatric population in Senegal, especially in infants aged ≤ 11 months.


Subject(s)
Pneumonia , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Humans , Child , Seasons , Phylogeny , Senegal , Sentinel Surveillance , Respiratory Syncytial Virus, Human/genetics , Genotype , Respiratory Tract Infections/epidemiology
8.
Nat Commun ; 14(1): 6440, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833275

ABSTRACT

It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.


Subject(s)
West Nile Fever , West Nile virus , Animals , West Nile virus/genetics , Phylogeny , Europe/epidemiology , South Africa , Birds
9.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896941

ABSTRACT

Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.

10.
Microorganisms ; 11(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630521

ABSTRACT

We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6-85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future.

11.
Sci Rep ; 13(1): 9121, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277417

ABSTRACT

During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Contact Tracing , Pandemics , Senegal/epidemiology
12.
IJID Reg ; 7: 216-221, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37153883

ABSTRACT

Objectives: Rift Valley Fever and Crimean-Congo Hemorrhagic Fever are two infections classified among the emerging diseases to be monitored with highest priority. Studies undertaken in human and animals have shown endemicity of these two arboviruses in several African countries. However, most of the investigations were carried out on domestic cattle and the studies conducted on human populations are either outdated or limited to a small number of well-known endemic areas. It is then critical to better evaluate the burden of these viruses in Senegal at a national scale. Methods: This work relies on a previous seroprevalence survey undertaken in all regions of Senegal at the end of 2020. The existing biobank was used to determine the immunoglobulin G [IgG] Rift Valley Fever and Crimean-Congo Hemorrhagic Fever seroprevalences by indirect enzyme-linked immunosorbent assay. Results: The crude seroprevalences of Rift Valley Fever and Crimean-Congo Hemorrhagic Fever were 3.94% and 0.7% respectively, with the northern and central part of the countries as the main exposed areas. However, acute infections reported in both high and low exposed regions suggest sporadic introductions. Conclusions: This study gives updated information and could be of interest to support the stakeholders in the management of these zoonoses.

13.
IJID Reg ; 7: 230-232, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37168517

ABSTRACT

Dengue fever is the most important mosquito-borne viral disease of humans, with a significant disease burden in tropical and subtropical countries. The disease is caused by four distinct dengue virus (DENV) serotypes, DENV-1 to -4, all of which belong to the family Flaviviridae, genus Flavivirus. Approximately 3.6 billion people live in areas where they are at risk of transmission of DENVs, resulting in up to 390 million infections and 96 million symptomatic cases annually. Although the disease is highly endemic in the West Africa region, little is known about the prevalence and distribution of DENVs in Niger. We hereby report the first laboratory-confirmed case of dengue in Niger.

14.
Lancet Infect Dis ; 23(8): 974-982, 2023 08.
Article in English | MEDLINE | ID: mdl-37127045

ABSTRACT

BACKGROUND: Evidence indicates that fractional doses of yellow fever vaccine are safe and sufficiently immunogenic for use during yellow fever outbreaks. However, there are no data on the generalisability of this observation to populations living with HIV. Therefore, we aimed to evaluate the immunogenicity of fractional and standard doses of yellow fever vaccine in HIV-positive adults. METHODS: We conducted a randomised, double-blind, non-inferiority substudy in Kilifi, coastal Kenya to compare the immunogenicity and safety of a fractional dose (one-fifth of the standard dose) versus the standard dose of 17D-213 yellow fever vaccine among HIV-positive volunteers. HIV-positive participants aged 18-59 years, with baseline CD4+ T-cell count of at least 200 cells per mL, and who were not pregnant, had no previous history of yellow fever vaccination or infection, and had no contraindication for yellow fever vaccination were recruited from the community. Participants were randomly assigned 1:1 in blocks (variable block sizes) to either a fractional dose or a standard dose of the 17D-213 yellow fever vaccine. Vaccines were administered subcutaneously by an unblinded nurse and pharmacist; all other study personnel were blinded to the vaccine allocation. The primary outcome of the study was the proportion of participants who seroconverted by the plaque reduction neutralisation test (PRNT50) 28 days after vaccination for the fractional dose versus the standard dose in the per-protocol population. Secondary outcomes were assessment of adverse events and immunogenicity during the 1-year follow-up period. Participants were considered to have seroconverted if the post-vaccination antibody titre was at least 4 times greater than the pre-vaccination titre. We set a non-inferiority margin of not less than a 17% decrease in seroconversion in the fractional dose compared with the standard dose. This study is registered with ClinicalTrials.gov, NCT02991495. FINDINGS: Between Jan 29, 2019, and May 17, 2019, 303 participants were screened, and 250 participants were included and vaccinated; 126 participants were assigned to the fractional dose and 124 to the standard dose. 28 days after vaccination, 112 (96%, 95% CI 90-99) of 117 participants in the fractional dose group and 115 (98%, 94-100) of 117 in the standard dose group seroconverted by PRNT50. The difference in seroconversion between the fractional dose and the standard dose was -3% (95% CI -7 to 2). Fractional dosing therefore met the non-inferiority criterion, and non-inferiority was maintained for 1 year. The most common adverse events were headache (n=31 [12%]), fatigue (n=23 [9%]), myalgia (n=23 [9%]), and cough (n=14 [6%]). Reported adverse events were either mild (182 [97%] of 187 adverse events) or moderate (5 [3%]) and were self-limiting. INTERPRETATION: Fractional doses of the 17D-213 yellow fever vaccine were sufficiently immunogenic and safe demonstrating non-inferiority to the standard vaccine dose in HIV-infected individuals with CD4+ T cell counts of at least 200 cells per mL. These results provide confidence that fractional dose recommendations are applicable to populations with high HIV prevalence. FUNDING: Wellcome Trust, Médecins Sans Frontières Foundation, and the UK Department for International Development.


Subject(s)
HIV Infections , Yellow Fever Vaccine , Yellow Fever , Adult , Female , Humans , Pregnancy , Antibodies, Viral , Double-Blind Method , Immunogenicity, Vaccine , Kenya , Vaccination/methods , Yellow Fever/prevention & control , Yellow Fever Vaccine/adverse effects
15.
Lancet Infect Dis ; 23(8): 965-973, 2023 08.
Article in English | MEDLINE | ID: mdl-37127047

ABSTRACT

BACKGROUND: Current supply shortages constrain yellow fever vaccination activities, particularly outbreak response. Although fractional doses of all WHO-prequalified yellow fever vaccines have been shown to be safe and immunogenic in a randomised controlled trial in adults, they have not been evaluated in a randomised controlled trial in young children (9-59 months old). We aimed to assess the immunogenicity and safety of fractional doses compared with standard doses of the WHO-prequalified 17D-213 vaccine in young children. METHODS: This substudy of the YEFE phase 4 study was conducted at the Epicentre Mbarara Research Centre (Mbarara, Uganda). Eligible children were aged 9-59 months without contraindications for vaccination, without history of previous yellow fever vaccination or infection and not requiring yellow fever vaccination for travelling. Participants were randomly assigned, using block randomisation, 1:1 to standard or fractional (one-fifth) dose of yellow fever vaccine. Investigators, participants, and laboratory personnel were blinded to group allocation. Participants were followed for immunogenicity and safety at 10 days, 28 days, and 1 year after vaccination. The primary outcome was non-inferiority in seroconversion (-10 percentage point margin) 28 days after vaccination measured by 50% plaque reduction neutralisation test (PRNT50) in the per-protocol population. Safety and seroconversion at 10 days and 12-16 months after vaccination (given COVID-19 resctrictions) were secondary outcomes. This study is registered with ClinicalTrials.gov, NCT02991495. FINDINGS: Between Feb 20, 2019, and Sept 9, 2019, 433 children were assessed, and 420 were randomly assigned to fractional dose (n=210) and to standard dose (n=210) 17D-213 vaccination. 28 days after vaccination, 202 (97%, 95% CI 95-99) of 207 participants in the fractional dose group and 191 (100%, 98-100) of 191 in the standard dose group seroconverted. The absolute difference in seroconversion between the study groups in the per-protocol population was -2 percentage points (95% CI -5 to 1). 154 (73%) of 210 participants in the fractional dose group and 168 (80%) of 210 in the standard dose group reported at least one adverse event 28 days after vaccination. At 10 days follow-up, seroconversion was lower in the fractional dose group than in the standard dose group. The most common adverse events were upper respiratory tract infections (n=221 [53%]), diarrhoea (n=68 [16%]), rhinorrhoea (n=49 [12%]), and conjunctivitis (n=28 [7%]). No difference was observed in incidence of adverse events and serious adverse events between study groups. CONCLUSIONS: Fractional doses of the 17D-213 vaccine were non-inferior to standard doses in inducing seroconversion 28 days after vaccination in children aged 9-59 months when assessed with PRNT50, but we found fewer children seroconverted at 10 days. The results support consideration of the use of fractional dose of yellow fever vaccines in WHO recommendations for outbreak response in the event of a yellow fever vaccine shortage to include children. FUNDING: Médecins Sans Frontières Foundation.


Subject(s)
COVID-19 , Yellow Fever Vaccine , Yellow Fever , Child, Preschool , Humans , Infant , Antibodies, Viral , Double-Blind Method , Immunogenicity, Vaccine , Uganda , Vaccination/methods , Yellow Fever/prevention & control , Yellow Fever Vaccine/adverse effects
16.
J Med Virol ; 95(4): e28700, 2023 04.
Article in English | MEDLINE | ID: mdl-36951314

ABSTRACT

Yellow fever (YF) virus is a mosquito-borne virus belonging to the Flaviviridae family that circulates in tropical and subtropical areas of Africa and South America. Despite the availability of an effective vaccine, YF remains a threat to travelers, residents of endemic areas, and unvaccinated populations. YF vaccination and natural infection both induce the production of neutralizing antibodies. Serological diagnostic methods detecting YF virus-specific antibodies demonstrate high levels of cross-reactivities with other flaviviruses. To date, the plaque reduction neutralization test (PRNT) is the most specific serological test for the differentiation of flavivirus infections and is considered the reference method for detecting YF neutralizing antibodies and assessing the protective immune response following vaccination. In this study, we developed and validated a YF PRNT. We optimized different parameters including cell concentration and virus-serum neutralization time period and then assessed the intra- and inter-assay precisions, dilutability, specificity, and lower limit of quantification (LLOQ) using international standard YF serum, sera from vaccinees and human specimens collected through YF surveillance. The YF PRNT has shown good robustness and 100% of intra-assay precision, 95.6% of inter-assay precision, 100% of specificity, 100% of LLOQ, and 95.3% of dilutability. The test is, therefore, suitable for use in the YF diagnostic as well as evaluation of the YF vaccine neutralizing antibody response and risk assessment studies.


Subject(s)
Vaccines , Yellow Fever Vaccine , Yellow Fever , Humans , Yellow Fever/diagnosis , Yellow Fever/prevention & control , Neutralization Tests , Yellow fever virus , Antibodies, Neutralizing , Antibodies, Viral
17.
J Med Virol ; 95(1): e28347, 2023 01.
Article in English | MEDLINE | ID: mdl-36424699

ABSTRACT

Globally, 390 million people are at risk of dengue infection and over the past 50 years, the virus incidence increased thirty-fold. In Senegal, an unprecedented occurrence of outbreaks and sporadic cases have been noticed since 2017. In October 2018, an outbreak of Dengue virus 2 (DENV-2) was reported in the north of Senegal affecting multiple areas including Saint-Louis, Richard Toll, and Rosso which are located at the border with Mauritania. Of these 173 blood specimen samples collected from patients, 27 were positive for dengue by quantitative reverse transcription PCR (qRT-PCR), and eight were serologically confirmed to be positive for DENV immunoglobulin M (IgM). Serotyping using qRT-PCR reveals that isolates were positive for DENV-2. A subset of DENV-2 positive samples was selected and subjected to whole-genome sequencing followed by phylogenetic analysis. Analysis of six nearly complete genome sequences revealed that the isolates belong to the cosmopolitan genotype and are closely related to the Mauritanian strains detected between 2017 and 2018 and those detected in many West African countries such as Burkina Faso or Cote d'Ivoire. Our results suggest a transboundary circulation of the DENV-2 cosmopolitan genotype between Senegal and Mauritania and call for a need for coordinated surveillance of arboviruses between these two countries. Interestingly, a high level of homology between West African isolates highlights endemicity and calls for the set-up of subregional viral genomic surveillance which will lead to a better understanding of viral dynamics, transmission, and spread across Africa.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/epidemiology , Senegal/epidemiology , Phylogeny , Disease Outbreaks , Genotype , Burkina Faso , Serogroup
18.
Viruses ; 14(12)2022 12 06.
Article in English | MEDLINE | ID: mdl-36560724

ABSTRACT

West Nile virus (WNV) is a virus of the Japanese encephalitis antigenic complex and belongs to the family Flaviviridae of the genus flavivirus. The virus can cause infection in humans which in most cases is asymptomatic, however symptomatic cases exist and the disease can be severe causing encephalitis and meningoencephalitis. The virus is maintained in an enzootic cycle involving mosquitoes and birds, humans and other mammals such as horses can be accidental hosts. A mosquito-based arbovirus surveillance system and the sentinel syndromic surveillance network (4S) have been in place since 1988 and 2015 respectively, to better understand the transmission dynamics of arboviruses including WNV in Senegal. Arthropod and human samples have been collected from the field and analysed at Institut Pasteur de Dakar using different methods including RT-PCR, ELISA, plaque reduction neutralization test and viral isolation. RT-PCR positive samples have been analysed by Next Generation Sequencing. From 2012 to 2021, 7912 samples have been analysed and WNV positive cases have been detected, 20 human cases (19 IgM and 1 RT-PCR positive cases) and 41 mosquito pools. Phylogenetic analyzes of the sequences of complete genomes obtained showed the circulation of lineage 1a, with all these recent strains from Senegal identical to each other and very close to strains isolated from horse in France in 2015, Italy and Spain. Our data showed lineage 1a endemicity in Senegal as previously described, with circulation of WNV in humans and mosquitoes. Phylogenetic analyzes carried out with the genome sequences obtained also revealed exchanges of WNV strains between Europe and Senegal which could be possible via migratory birds. The surveillance systems that have enabled the detection of WNV in humans and arthropods should be extended to animals in a one-health approach to better prepare for global health threats.


Subject(s)
Arboviruses , Culicidae , West Nile Fever , West Nile virus , Humans , Animals , Horses , West Nile virus/genetics , West Nile Fever/epidemiology , West Nile Fever/veterinary , Phylogeny , Senegal/epidemiology , Birds , Europe/epidemiology , Mammals
19.
Trop Med Infect Dis ; 7(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36548675

ABSTRACT

Senegal is hyperendemic for dengue. Since 2017, outbreaks have been noticed annually in many regions around the country, marked by the co-circulation of DENV1-3. On 8 October 2021, a Dengue virus outbreak in the Rosso health post (sentinel site of the syndromic surveillance network) located in the north of the country was notified to the WHO Collaborating Center for arboviruses and hemorrhagic fever viruses at Institut Pasteur de Dakar. A multidisciplinary team was then sent for epidemiological and virologic investigations. This study describes the results from investigations during an outbreak in Senegal using a rapid diagnostic test (RDT) for the combined detection of dengue virus non-structural protein 1 (NS1) and IgM/IgG. For confirmation, samples were also tested by real-time RT-PCR and IgM ELISA at the reference lab in Dakar. qRT-PCR positive samples were subjected to whole genome sequencing using nanopore technology. Virologic analysis scored 102 positives cases (RT-PCR, NS1 antigen detection and/or IgM) out of 173 enrolled patients; interestingly, virus serotyping showed that the outbreak was caused by the DENV-1, a serotype different from DENV-2 involved during the outbreak in Rosso three years earlier, indicating a serotype replacement. Nearly all field-tested NS1 positives samples were confirmed by qRT-PCR with a concordance of 92.3%. Whole genome sequencing and phylogenetic analysis of strains suggested a re-introduction in Rosso of a DENV-1 strain different to the one responsible for the outbreak in the Louga area five years before. Findings call for improved dengue virus surveillance in Senegal, with a wide deployment of DENV antigenic tests, which allow easy on-site diagnosis of suspected cases and early detection of outbreaks. This work highlights the need for continuous monitoring of circulating serotypes which is crucial for a better understanding of viral epidemiology around the country.

20.
Article in English | MEDLINE | ID: mdl-36554793

ABSTRACT

Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, we focused on a dengue outbreak which occurred in Senegal in 2018 in the context of a large religious gathering with 263 confirmed DENV cases out of 832 collected samples, including 25 life-threatening cases and 2 deaths. It was characterized by a co-circulation of dengue serotypes 1 and 3. Phylogenetic analysis based on the E gene revealed that the main detected serotype in Touba was DENV-3 and belonged to Genotype III. Bayesian phylogeographic analysis was performed and suggested one viral introduction around 2017.07 (95% HPD = 2016.61-2017.57) followed by cryptic circulation before the identification of the first case on 1 October 2018. DENV-3 strains are phylogenetically related, with strong phylogenetic links between strains retrieved from Burkina Faso and other West African countries. These phylogenetic data substantiate epidemiological data of the origin of DENV-3 and its spread between African countries and subsequent diffusion after religious mass events. The study also highlighted the usefulness of a mobile laboratory during the outbreak response, allowing rapid diagnosis and resulting in improved patient management.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/epidemiology , Dengue Virus/genetics , Serogroup , Phylogeny , Senegal/epidemiology , Bayes Theorem , Disease Outbreaks , Genotype , Burkina Faso
SELECTION OF CITATIONS
SEARCH DETAIL
...