Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pain ; 26(6): 1304-1321, 2022 07.
Article in English | MEDLINE | ID: mdl-35388574

ABSTRACT

BACKGROUND: P2X7 receptor antagonists have potential for treating various central nervous system (CNS) diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signalling in pain, and the lack of a corresponding preclinical mechanistic biomarker. METHODS: Lu AF27139 is a highly selective and potent small molecule antagonist at rat, mouse and human forms of the P2X7 receptor, with excellent pharmacokinetic and CNS permeability properties. In the current experiments, we probed the utility of previously characterized and novel signalling cascades exposed to Lu AF27139 using cultured microglia combined with release assays. Subsequently, we assessed the biomarker potential of identified candidate molecules in the rat chronic constriction injury (CCI) model of neuropathic pain; study design limitations precluded their assessment in spared nerve injury (SNI) rats. RESULTS: Lu AF27139 blocked several pain-relevant pathways downstream of P2X7 receptors in vitro. At brain and spinal cord receptor occupancy levels capable of functionally blocking P2X7 receptors, it diminished neuropathic hypersensitivity in SNI rats, and less potently in CCI rats. Although tissue levels of numerous molecules previously linked to neuropathic pain and P2X7 receptor function (e.g. IL-6, IL-1ß, cathepsin-S, 2-AG) were unaffected by CCI, Lu AF27139-mediated regulation of spinal PGE2 and miRNA (e.g. rno-miR-93-5p) levels increased by CCI aligned with its ability to diminish neuropathic hypersensitivity. CONCLUSIONS: We have identified a pain-relevant P2X7 receptor-regulated mechanism in neuropathic rats, which could hold promise as a translatable biomarker and by association enhance the clinical progression of P2X7 receptor antagonists in neuropathic pain. SIGNIFICANCE: Sub-optimal translation of preclinical molecules has hindered the clinical development of novel mechanism of action analgesics. We have undertaken a comprehensive in vitro analysis of migroglial signalling mechanisms recruited upon P2X7 receptor activation, a number of which were shown to be modulated by a selective P2X7 receptor antagonist in a well characterized animal model of neuropathic pain. Subject to further confirmation in other neuropathic models, this opens up the possibility to investigate their clinical utility as potential pain biomarkers in patients.


Subject(s)
Hypersensitivity , MicroRNAs , Neuralgia , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Animals , Hypersensitivity/metabolism , MicroRNAs/metabolism , Microglia/metabolism , Neuralgia/metabolism , Prostaglandins/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/metabolism , Spinal Cord/metabolism
2.
Eur J Pharmacol ; 795: 1-7, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27876619

ABSTRACT

Neuropathic pain is a debilitating, chronic condition with a significant unmet need for effective treatment options. Recent studies have demonstrated that in addition to neurons, non-neuronal cells such as microglia contribute to the initiation and maintenance of allodynia in rodent models of neuropathic pain. The Ca2+- activated K+ channel, KCa3.1 is critical for the activation of immune cells, including the CNS-resident microglia. In order to evaluate the role of KCa3.1 in the maintenance of mechanical allodynia following peripheral nerve injury, we used senicapoc, a stable and highly potent KCa3.1 inhibitor. In primary cultured microglia, senicapoc inhibited microglial nitric oxide and IL-1ß release. In vivo, senicapoc showed high CNS penetrance and when administered to rats with peripheral nerve injury, it significantly reversed tactile allodynia similar to the standard of care, gabapentin. In contrast to gabapentin, senicapoc achieved efficacy without any overt impact on locomotor activity. Together, the data demonstrate that the KCa3.1 inhibitor senicapoc is effective at reducing mechanical hypersensitivity in a rodent model of peripheral nerve injury.


Subject(s)
Acetamides/pharmacology , Hyperalgesia/complications , Hyperalgesia/drug therapy , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Peripheral Nerve Injuries/complications , Potassium Channel Blockers/pharmacology , Trityl Compounds/pharmacology , Acetamides/adverse effects , Acetamides/pharmacokinetics , Acetamides/therapeutic use , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Stability , Humans , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Locomotion/drug effects , Microglia/drug effects , Microglia/metabolism , Potassium/metabolism , Potassium Channel Blockers/adverse effects , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/therapeutic use , Rats , Trityl Compounds/adverse effects , Trityl Compounds/pharmacokinetics , Trityl Compounds/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL