Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Hepatol ; 29(5): 101528, 2024.
Article in English | MEDLINE | ID: mdl-38971372

ABSTRACT

INTRODUCTION AND OBJECTIVES: Despite the huge clinical burden of MASLD, validated tools for early risk stratification are lacking, and heterogeneous disease expression and a highly variable rate of progression to clinical outcomes result in prognostic uncertainty. We aimed to investigate longitudinal electronic health record-based outcome prediction in MASLD using a state-of-the-art machine learning model. PATIENTS AND METHODS: n = 940 patients with histologically-defined MASLD were used to develop a deep-learning model for all-cause mortality prediction. Patient timelines, spanning 12 years, were fully-annotated with demographic/clinical characteristics, ICD-9 and -10 codes, blood test results, prescribing data, and secondary care activity. A Transformer neural network (TNN) was trained to output concomitant probabilities of 12-, 24-, and 36-month all-cause mortality. In-sample performance was assessed using 5-fold cross-validation. Out-of-sample performance was assessed in an independent set of n = 528 MASLD patients. RESULTS: In-sample model performance achieved AUROC curve 0.74-0.90 (95 % CI: 0.72-0.94), sensitivity 64 %-82 %, specificity 75 %-92 % and Positive Predictive Value (PPV) 94 %-98 %. Out-of-sample model validation had AUROC 0.70-0.86 (95 % CI: 0.67-0.90), sensitivity 69 %-70 %, specificity 96 %-97 % and PPV 75 %-77 %. Key predictive factors, identified using coefficients of determination, were age, presence of type 2 diabetes, and history of hospital admissions with length of stay >14 days. CONCLUSIONS: A TNN, applied to routinely-collected longitudinal electronic health records, achieved good performance in prediction of 12-, 24-, and 36-month all-cause mortality in patients with MASLD. Extrapolation of our technique to population-level data will enable scalable and accurate risk stratification to identify people most likely to benefit from anticipatory health care and personalized interventions.


Subject(s)
Electronic Health Records , Humans , Male , Female , Middle Aged , Risk Assessment , Aged , Prognosis , Cause of Death , Deep Learning , Risk Factors , Predictive Value of Tests , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/diagnosis , Adult , Neural Networks, Computer , Retrospective Studies
2.
Ann Hepatol ; 29(2): 101278, 2024.
Article in English | MEDLINE | ID: mdl-38135251

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), defined by the presence of liver steatosis together with at least one out of five cardiometabolic factors, is the most common cause of chronic liver disease worldwide, affecting around one in three people. Yet the clinical presentation of MASLD and the risk of progression to cirrhosis and adverse clinical outcomes is highly variable. It, therefore, represents both a global public health threat and a precision medicine challenge. Artificial intelligence (AI) is being investigated in MASLD to develop reproducible, quantitative, and automated methods to enhance patient stratification and to discover new biomarkers and therapeutic targets in MASLD. This review details the different applications of AI and machine learning algorithms in MASLD, particularly in analyzing electronic health record, digital pathology, and imaging data. Additionally, it also describes how specific MASLD consortia are leveraging multimodal data sources to spark research breakthroughs in the field. Using a new national-level 'data commons' (SteatoSITE) as an exemplar, the opportunities, as well as the technical challenges of large-scale databases in MASLD research, are highlighted.


Subject(s)
Fatty Liver , Metabolic Diseases , Humans , Artificial Intelligence , Algorithms , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL