Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(9): 107728, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37694139

ABSTRACT

Innate lymphoid cells (ILCs) are plastic immune cells divided into 3 main subsets, characterized by distinct phenotypic and functional profiles. Using single cell approaches, heightened heterogeneity of mouse ILCs has been appreciated, imprinted by tissue signals that shape their transcriptome and epigenome. Intra-subset diversity has also been observed in human ILCs. However, combined transcriptomic and epigenetic analyses of single ILCs in humans are lacking. Here, we show high transcriptional and epigenetic heterogeneity among human circulating ILCs in healthy individuals. We describe phenotypically distinct subclusters and diverse chromatin accessibility within main ILC populations, compatible with differentially poised states. We validate the use of this healthy donor-based analysis as resource dataset to help inferring ILC changes occurring in disease conditions. Overall, our work provides insights in the complex human ILC biology. We anticipate it to facilitate hypothesis-driven studies in patients, without the need to perform single cell OMICs using precious patients' material.

2.
Cell Rep ; 39(11): 110956, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705047

ABSTRACT

Celiac disease (CD) is a multisystem disease in which different organs may be affected. We investigate whether circulating innate lymphoid cells (ILCs) contribute to the CD peripheral inflammatory status. We find that the CD cytokine profile is characterized by high concentrations of IL-12p40, IL-18, and IFN-γ, paralleled by an expansion of ILC precursors (ILCPs). In the presence of the gliadin peptides p31-43 and pα-9, ILCPs from CD patients increase transglutaminase 2 (TG2) expression, produce IL-18 and IFN-γ, and stimulate CD4+ T lymphocytes. IFN-γ is also produced upon stimulation with IL-12p40 and IL-18 and is inhibited by the addition of vitamin D. Low levels of blood vitamin D correlate with high IFN-γ and ILCP presence and mark the CD population mostly affected by extraintestinal symptoms. Dietary vitamin D supplementation appears to be an interesting therapeutic approach to dampen ILCP-mediated IFN-γ production.


Subject(s)
Celiac Disease , Immunity, Innate , Celiac Disease/immunology , Celiac Disease/metabolism , Gliadin/metabolism , Gliadin/pharmacology , Humans , Interleukin-12 Subunit p40/metabolism , Interleukin-18/metabolism , Intestinal Mucosa/metabolism , Lymphocytes/metabolism , Vitamin D/metabolism , Vitamin D/pharmacology
3.
EMBO J ; 41(12): e109300, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35467036

ABSTRACT

Group-2 innate lymphoid cells (ILC2s), which are involved in type 2 inflammatory diseases such as allergy, can exhibit immunological memory, but the basis of this ILC2 "trained immunity" has remained unclear. Here, we found that stimulation with IL-33/IL-25 or exposure to the allergen papain induces the expression of the transcription factor c-Maf in mouse ILC2s. Chronic papain exposure results in high production of IL-5 and IL-13 cytokines and lung eosinophil recruitment, effects that are blocked by c-Maf deletion in ILCs. Transcriptomic analysis revealed that knockdown of c-Maf in ILC2s suppresses expression of type 2 cytokine genes, as well as of genes linked to a memory-like phenotype. Consistently, c-Maf was found highly expressed in human adult ILC2s but absent in cord blood and required for cytokine production in isolated human ILC2s. Furthermore, c-Maf-deficient mouse or human ILC2s failed to exhibit strengthened ("trained") responses upon repeated challenge. Thus, the expression of c-Maf is indispensable for optimal type 2 cytokine production and proper memory-like responses in group-2 innate lymphoid cells.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Cytokines/metabolism , Humans , Interleukin-33/genetics , Interleukin-33/metabolism , Lung/metabolism , Lymphocytes/metabolism , Mice , Papain/metabolism , Proto-Oncogene Proteins c-maf/metabolism
4.
Nat Immunol ; 22(11): 1403-1415, 2021 11.
Article in English | MEDLINE | ID: mdl-34686867

ABSTRACT

Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Macrophage Activation , Melanoma/metabolism , Membrane Lipids/metabolism , Skin Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Animals , Cell Line, Tumor , Cell Survival , Endoplasmic Reticulum/ultrastructure , Glucosylceramidase/metabolism , Intracellular Membranes/ultrastructure , Melanoma/genetics , Melanoma/ultrastructure , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/ultrastructure , Tumor Escape , Tumor Microenvironment , Tumor-Associated Macrophages/ultrastructure , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
5.
J Asthma Allergy ; 14: 773-783, 2021.
Article in English | MEDLINE | ID: mdl-34239308

ABSTRACT

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) have emerged as key players in the development of type 2 driven diseases such as allergy and asthma. Due to their low number in the circulation, in vitro expansion is needed to unravel their mechanisms of action. PURPOSE: The aim of this study is to assess the impact of different culture conditions and address whether the method of expansion may distinctly affect healthy donor or patient-derived ILC2s. METHODS: Here, we described the impact of six different culture conditions on the proliferation, phenotype and function of human ILC2s freshly obtained from healthy donors (healthy ILC2s) and allergic patients (patient ILC2s). RESULTS: We showed that the cytokine cocktail or the PHA induced the highest proliferation of healthy ILC2s and patient ILC2s, respectively. We observed that the stromal cells OP9, used as ILC2 feeders, did not boost their proliferation, but impaired the activation marker expression and the function of patient ILC2s. Furthermore, we demonstrated that the culture conditions differently impacted the activation state of c-Kithigh and c-Kitlow ILC2s, in both healthy donors and allergic patients. Last, we also observed that ILC2s expanded only with IL-2 and IL-7 were the most prone to secrete IL-5 and IL-13 upon IL-33 stimulation. In contrast, in patients, the addition of OP9 cells during the expansion restrained their type 2 cytokine secretory functions. CONCLUSION: This report highlights that culture conditions distinctly impacted on the healthy or patient ILC2 behavior, with important consequences for their study in disease settings.

6.
Front Immunol ; 10: 2801, 2019.
Article in English | MEDLINE | ID: mdl-31849977

ABSTRACT

Innate lymphoid cells (ILCs) represent the most recently identified family of innate lymphocytes that act as first responders, maintaining tissue homeostasis and protecting epithelial barriers. In the last few years, group 2 ILCs (ILC2s) have emerged as key regulators in several immunological processes such as asthma and allergy. Whilst ILC2s are currently being evaluated as novel targets for immunotherapy in these diseases, their involvement in tumor immunity has only recently begun to be deciphered. Here, we provide a comprehensive overview of the pleiotropic roles of ILC2s in different tumor settings. Furthermore, we discuss how different therapeutic approaches targeting ILC2s could improve the efficacy of current tumor immunotherapies.


Subject(s)
Lymphocytes/immunology , Neoplasms/immunology , Animals , Humans , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...