Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Front Microbiol ; 15: 1418959, 2024.
Article in English | MEDLINE | ID: mdl-38962124

ABSTRACT

In recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common. For the rapid and on-site preliminary diagnosis on the pig farms, this study aimed to develop a colloidal gold immunochromatography assay (GICA) strip for the detection of PEDV and TGEV simultaneously. The GICA kit showed that there was no cross-reactivity with the other five common porcine viruses. With visual observation, the lower limits were approximately 104 TCID50/mL and 104 TCID50/mL for PEDV and TGEV, respectively. The GICA strip could be stored at 4°C or 25°C for 12 months without affecting its efficacy. To validate the GICA strip, 121 clinical samples were tested. The positive rates of PEDV and TGEV were 42.9 and 9.9%, respectively, and the co-infection rate of the two viruses was 5.8% based on the duplex GICA strip. Thus, the established GICA strip is a rapid, specific, and stable tool for on-site preliminary diagnosis of PEDV- and TGEV-associated diarrhea.

2.
Sci Rep ; 14(1): 16331, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009689

ABSTRACT

To determine the independent risk factors of cardiopulmonary exercise test (CPET) parameters related to adverse prognostic events within 5 years in patients undergoing percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI), and establish a prediction model for the occurrence of adverse events within 5 years to provide a reference for cardiac rehabilitation training. From August 2015 to December 2021, patients who underwent PCI for AMI and completed CPET within 1-2 weeks after surgery before discharge from the Department of Cardiovascular Medicine of Zhengzhou Central Hospital Affiliated to Zhengzhou University, Henan Provincial Hospital of Traditional Chinese Medicine, and Anyang District Hospital were selected as participants. Univariate and multivariate analyses were used to screen for independent risk factors associated with 5-year adverse events. Feature importance was interpreted using SHapley Additive exPlanations (SHAP), and a logistic regression model was established for prediction. A receiver operating characteristic (ROC) curve was constructed to evaluate the performance of the prediction model. Calibration was assessed by the Hosmer-Lemeshow test and the calibration curve. In total, 375 patients met the inclusion criteria. Based on whether adverse events occurred during the 5-year follow-up period, the patients were divided into two groups: the event group (n = 53) and the non-event group (n = 322). Peak oxygen uptake (peakVO2), carbon dioxide ventilation equivalent slope (VE/VCO2slop), and peak end-tidal carbon dioxide partial pressure (PETCO2) were three independent risk factors for re-acute myocardial infarction (re-AMI), heart failure (HF), and even death after PCI for AMI (P < 0.05). The SHAP plots demonstrated that the significant contributors to model performance were related to peakVO2, VE/VCO2slop, and PETCO2. The risk of adverse events was significantly reduced when the peakVO2 was ≥ 20 mL/kg/min and the VE/VCO2slop was < 33. The ROC curves of the three models were drawn, including the no-event and event groups, re-AMI group, and HF group, which performed well, with AUC of 0.894, 0.760, and 0.883, respectively. The Hosmer-Lemeshow test showed that the three models were a good fit (P > 0.05). The calibration curve of the three models was close to the ideal diagonal lines. CPET parameters can predict the prognosis of adverse events within 5 years after PCI in patients with AMI and provide a theoretical basis for cardiac rehabilitation training.


Subject(s)
Exercise Test , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/adverse effects , Male , Female , Middle Aged , Myocardial Infarction/physiopathology , Myocardial Infarction/diagnosis , Prognosis , Exercise Test/methods , Aged , Risk Factors , ROC Curve
3.
Ann Intern Med ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38976882

ABSTRACT

BACKGROUND: Methadone maintenance treatment (MMT) is effective for managing opioid use disorder, but adverse effects mean that optimal therapy occurs with the lowest dose that controls opioid craving. OBJECTIVE: To assess the efficacy of acupuncture versus sham acupuncture on methadone dose reduction. DESIGN: Multicenter, 2-group, randomized, sham-controlled trial. (Chinese Clinical Trial Registry: ChiCTR2200058123). SETTING: 6 MMT clinics in China. PARTICIPANTS: Adults aged 65 years or younger with opioid use disorder who attended clinic daily and had been using MMT for at least 6 weeks. INTERVENTION: Acupuncture or sham acupuncture 3 times a week for 8 weeks. MEASUREMENTS: The 2 primary outcomes were the proportion of participants who achieved a reduction in methadone dose of 20% or more compared with baseline and opioid craving, which was measured by the change from baseline on a 100-mm visual analogue scale (VAS). RESULTS: Of 118 eligible participants, 60 were randomly assigned to acupuncture and 58 were randomly assigned to sham acupuncture (2 did not receive acupuncture). At week 8, more patients reduced their methadone dose 20% or more with acupuncture than with sham acupuncture (37 [62%] vs. 16 [29%]; risk difference, 32% [97.5% CI, 13% to 52%]; P < 0.001). In addition, acupuncture was more effective in decreasing opioid craving than sham acupuncture with a mean difference of -11.7 mm VAS (CI, -18.7 to -4.8 mm; P < 0.001). No serious adverse events occurred. There were no notable differences between study groups when participants were asked which type of acupuncture they received. LIMITATION: Fixed acupuncture protocol limited personalization and only 12 weeks of follow-up after stopping acupuncture. CONCLUSION: Eight weeks of acupuncture were superior to sham acupuncture in reducing methadone dose and decreasing opioid craving. PRIMARY FUNDING SOURCE: National Natural Science Foundation of China.

4.
Vet Microbiol ; 295: 110137, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851153

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emergent enteric coronavirus, primarily inducing diarrhea in swine, particularly in nursing piglets, with the additional potential for zoonotic transmission to humans. Despite the significant impact of PDCoV on swine populations, its pathogenic mechanisms remain incompletely understood. Complement component 3 (C3) plays a pivotal role in the prevention of viral infections, however, there are no reports concerning the influence of C3 on the proliferation of PDCoV. In this study, we initially demonstrated that PDCoV is capable of activating the C3 and eliciting inflammatory responses. The overexpression of C3 significantly suppressed PDCoV replication, while inhibition of C3 expression facilitated PDCoV replication. We discovered that nonstructural proteins Nsp7, Nsp14, and M, considerably stimulated C3 expression, particularly Nsp14, through activation of the p38-MAPK-C/EBP-ß pathway. The N7-MTase constitutes a significant functional domain of the non-structural protein Nsp14, which is more obvious to upregulate C3. Furthermore, functional mutants of the N7-MTase domain suggested that the D44 and T135 of N7-Mtase constituted a pivotal amino acid site to promote C3 expression. This provides fresh insights into comprehending how the virus manipulates the host immune response and suggests potential antiviral strategies against PDCoV.


Subject(s)
Complement C3 , Deltacoronavirus , Viral Nonstructural Proteins , Virus Replication , p38 Mitogen-Activated Protein Kinases , Animals , Complement C3/genetics , Complement C3/metabolism , Complement C3/immunology , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Swine , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Deltacoronavirus/genetics , Swine Diseases/virology , Swine Diseases/genetics , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , MAP Kinase Signaling System , Humans , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics
5.
Virology ; 597: 110150, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917690

ABSTRACT

Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections , Deltacoronavirus , Swine Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Swine , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Deltacoronavirus/immunology , Mice , Pregnancy , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals, Newborn
6.
Vet Sci ; 11(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38921977

ABSTRACT

Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle's age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics.

7.
Microb Pathog ; 192: 106714, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801864

ABSTRACT

Porcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old. Neutralizing antibody assay showed that the level of the inactivated PDCoV group was still ≥1:64 at three months after prime vaccination. The three-month-old pigs were orally challenged with PDCoV strain CZ2020. Two pigs in challenge control group showed mild to severe diarrhea at 10-11 day-post-challenge (DPC), while the inactivated PDCoV group had no diarrhea. High levels of viral shedding, substantial intestinal villus atrophy, and positive straining of viral antigens in ileum were detected in challenge control group, while the pigs in inactivated PDCoV group exhibited significantly reduced viral load, minor intestinal villi damage and negative straining of viral antigens. These results demonstrated that PDCoV was pathogenic against three-month-old pigs and inactivated PDCoV vaccine can provide effective protection in pigs lasting for three months.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections , Diarrhea , Swine Diseases , Vaccines, Inactivated , Viral Vaccines , Virus Shedding , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Swine , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Diarrhea/prevention & control , Diarrhea/immunology , Diarrhea/virology , Vaccination , Coronavirus/immunology , Viral Load , Antigens, Viral/immunology
8.
Vet Microbiol ; 293: 110070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593624

ABSTRACT

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Subject(s)
DNA Helicases , Inflammation , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Animals , Swine , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Phosphorylation , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Virus Replication , Coronavirus/immunology , Coronavirus/physiology , Cell Line , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/genetics , Immunity, Innate
9.
Virus Res ; 345: 199381, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679392

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious swine intestinal disease caused by PED virus (PEDV). Vaccination is a promising strategy to prevent and control PED. Previous studies have confirmed that glycosylation could regulate the immunogenicity of viral antigens. In this study, we constructed three recombinant PEDVs which removed the glycosylation sites in RBD. Viral infection assays revealed that similar replication characteristics between the recombinant viruses and parental PEDV. Although animal challenging study demonstrated that the glycosylation sites in RBD do not affect the pathogenicity of PEDV, we found that removing the glycosylation sites on the RBD regions could promote the IgG and neutralization titer in vivo, suggesting deglycosylation in RBD could enhance the immunogenicity of PEDV. These findings demonstrated that removal of the glycosylation sites in RBD is a promising method to develop PEDV vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Glycosylation , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Vero Cells , Chlorocebus aethiops , Immunoglobulin G/immunology , Immunoglobulin G/blood , Immunogenicity, Vaccine , Mice
10.
Arch Virol ; 169(5): 89, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565720

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality in neonatal suckling piglets, leading to significant economic losses to the swine industry. Panax notoginseng saponins (PNS) are bioactive extracts derived from the P. notoginseng plant. In this study, we investigated the anti-PEDV effect of PNS by employing various methodologies to assess their impact on PEDV in Vero cells. Using a CCK-8 (Cell Counting Kit-8) assay, we found that PNS had no significant cytotoxicity below the concentration of 128 µg/mL in Vero cells. Using immunofluorescence assays (IFAs), an enzyme-linked immunosorbent assay (ELISA), and plaque formation assays, we observed a dose-dependent inhibition of PEDV infection by PNS within 24-48 hours postinfection. PNS exerts its anti-PEDV activity specifically at the genome replication stage, and mRNA-seq analysis demonstrated that treatment with PNS resulted in increased expression of various genes, including IFIT1 (interferon-induced protein with tetratricopeptide repeats 1), IFIT3 (interferon-induced protein with tetratricopeptide repeats 3), CFH (complement factor H), IGSF10 (immunoglobulin superfamily member 10), ID2 (inhibitor of DNA binding 2), SPP1 (secreted phosphoprotein 1), PLCB4 (phospholipase C beta 4), and FABP4 (fatty acid binding protein 4), but it resulted in decreased expression of IL1A (interleukin 1 alpha), TNFRSF19 (TNF receptor superfamily member 19), CDH8 (cadherin 8), DDIT3 (DNA damage inducible transcript 3), GADD45A (growth arrest and DNA damage inducible alpha), PTPRG (protein tyrosine phosphatase receptor type G), PCK2 (phosphoenolpyruvate carboxykinase 2), and ADGRA2 (adhesion G protein-coupled receptor A2). This study provides insights into the potential mechanisms underlying the antiviral effects of PNS. Taken together, the results suggest that the PNS might effectively regulate the defense response to the virus and have potential to be used in antiviral therapies.


Subject(s)
Coronavirus Infections , Panax notoginseng , Porcine epidemic diarrhea virus , Saponins , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Saponins/pharmacology , Vero Cells , Porcine epidemic diarrhea virus/genetics , Interferons , Antiviral Agents/pharmacology , Swine Diseases/drug therapy
11.
Adv Healthc Mater ; 13(15): e2304575, 2024 06.
Article in English | MEDLINE | ID: mdl-38436662

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has a significant impact on global health and the economy. It has underscored the urgent need for a stable, easily produced and effective vaccine. This study presents a novel approach using SARS-CoV-2 spike (S) protein-conjugated nanoparticles (NPs) in combination with cyclic GMP-AMP (cGAMP) (S-NPs-cGAMP) as a subunit vaccine. When mice are immunized, the antiserum of S-NPs-cGAMP group exhibits a 16-fold increase in neutralizing activity against a pseudovirus, compared to S protein group. Additionally, S-NPs-cGAMP induces even higher levels of neutralizing antibodies. Remarkably, the vaccine also triggers a robust humoral immune response, as evidenced by a notable elevation in virus-specific IgG and IgM antibodies. Furthermore, after 42 days of immunization, there is an observed increase in specific immune cell populations in the spleen. CD3+CD4+ and CD3+CD8+T lymphocytes, as well as B220+CD19+ and CD3-CD49b+ NK lymphocytes, show an upward trend, indicating a positive cellular immune response. Moreover, the S-NPs-cGAMP demonstrates promising results against the Delta strain and exhibits good cross-neutralization potential against other variants. These findings suggest that pDMDAAC NPs is potential adjuvant and could serve as a versatile platform for future vaccine development.


Subject(s)
COVID-19 Vaccines , COVID-19 , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit , Animals , Nanoparticles/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/administration & dosage , Mice , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/prevention & control , COVID-19/immunology , Female , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Humans , Immunity, Humoral/drug effects , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Polymers/chemistry
12.
Microb Pathog ; 190: 106612, 2024 May.
Article in English | MEDLINE | ID: mdl-38467166

ABSTRACT

Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.


Subject(s)
Diarrhea , Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus/pathogenicity , Swine , Rotavirus Infections/virology , Rotavirus Infections/veterinary , China , Swine Diseases/virology , Diarrhea/virology , Diarrhea/veterinary , Intestine, Small/virology , Intestine, Small/pathology , Feces/virology , High-Throughput Nucleotide Sequencing
13.
mBio ; 15(2): e0295823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38231557

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses in vivo. Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Female , Mice , Antibodies, Viral , mRNA Vaccines , Porcine epidemic diarrhea virus/genetics , Viral Vaccines/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Spike Glycoprotein, Coronavirus/genetics , Diarrhea , RNA, Messenger/genetics , Swine Diseases/prevention & control
14.
Vaccine ; 42(4): 828-839, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38220489

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has caused serious economic losses to the pig husbandry worldwide, and the effects of existing commercialized vaccines are suboptimal. Therefore, research to develop an efficacious vaccine for prevention and control of PEDV is essential. In this study, we designed and produced trimerized proteins of full-length PEDV spike (S) protein, S1 subunit, and a tandem of multiple epitopes of S protein using an efficient mammalian expression vector system in HEK 293F cells. The immunogenicity of two commercial adjuvants, M401 and M103, was also evaluated in mice. Enzyme-linked immunosorbent assays demonstrated that all immunized mice generated highly systemic PEDV S-specific IgG and IgA antibodies. Mice in S/M103-immunized group generated the highest neutralizing antibody titer with 1:96. Compared with control group, the subunit vaccines elicited multifunctional CD3+CD4+ and CD3+CD8+ T cells, B220+CD19+ B cells, and CD3-CD49b+ natural killer cells in the spleen. PEDV S/M103 vaccine, which had the best immune effect, was selected for further evaluation in piglets. Immunization with S/M103 vaccine induced high levels of S-specific IgG, IgA, and neutralizing antibodies, and increased the proliferation of peripheral blood mononuclear cells and the expression levels of interferon-γ and interleukin-4 in peripheral blood of piglets. Virus challenge test results showed significantly lower diarrheal index scores and fecal viral loads, and less pathological damage to the intestines in S/M103-immunized piglets than in controls, indicating that S/M103 provides good protection against the virulent virus challenge. Our findings suggest that trimeric PEDV S/M103 has potential as a clinical vaccine candidate.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Mice , Antibodies, Viral , Protein Subunit Vaccines , CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Vaccines, Subunit , Immunoglobulin A , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Mammals
15.
ACS Appl Bio Mater ; 7(1): 256-268, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38109849

ABSTRACT

Antimicrobial resistance is a serious problem in biomedical applications that seriously increases the risk of medical failure. Therefore, developing highly efficient antibacterial agents that inhibit the growth of multidrug-resistant bacteria is a long-standing research goal. In this report, a low-cytotoxicity and highly efficient alternative to antibiotics was designed and prepared using edible corn starch as the scaffold and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) as the antimicrobial agent. The HTCC/starch particles were found to have a positively charged surface over a wide pH range and to possess broad-spectrum and highly efficient antimicrobial properties. These particles inhibited the growth of standard Gram-positive and Gram-negative bacteria from the China Pharmacopoeia and a clinical multidrug-resistant bacterial strain. Moreover, after treating the HTCC/starch particles with simulated gastric fluid (SGF, pH 1.2) for 4 h, the growth of clinical multidrug-resistant Escherichia coli (NT 2036) was inhibited effectively, indicating that these particles tolerate a gastric acid environment. Although the mass of SGF-treated HTCC/starch particles required to achieve similar antibacterial activity was ∼20-fold that of chloramphenicol or ampicillin, antibiotic-containing products require considerable amounts of pharmaceutical excipients to prepare. Therefore, the HTCC/starch particles described herein are potentially cost-effective alternatives to antibiotics that resolve the antimicrobial resistance issue, especially for inhibiting the growth of pathogenic intestinal bacteria.


Subject(s)
Anti-Infective Agents , Chitosan , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zea mays , Starch/pharmacology , Chitosan/chemistry , Gram-Positive Bacteria , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology
16.
J Virol ; 97(11): e0120923, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37843366

ABSTRACT

IMPORTANCE: Porcine epidemic diarrhea caused by porcine coronaviruses remains a major threat to the global swine industry. Fatty acids are extensively involved in the whole life of the virus. In this study, we found that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) significantly reduced the viral load of porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine delta coronavirus (PDCoV) and acted on the replication of the viruses rather than attachment and entry. We further confirmed that DHA and EPA inhibited PEDV replication by alleviating the endoplasmic reticulum stress. Meanwhile, DHA and EPA alleviate PEDV-induced inflammation and reactive oxygen species (ROS) levels and enhance the cellular antioxidant capacity. These data indicate that DHA and EPA have antiviral effects on porcine coronaviruses and provide a molecular basis for the development of new fatty acid-based therapies to control porcine coronavirus infection and transmission.


Subject(s)
Coronavirus Infections , Coronavirus , Docosahexaenoic Acids , Eicosapentaenoic Acid , Swine Diseases , Animals , Coronavirus/physiology , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/drug therapy , Transmissible gastroenteritis virus/physiology , Virus Replication/drug effects , Endoplasmic Reticulum Stress/drug effects
17.
J Virol ; 97(11): e0095823, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37846983

ABSTRACT

IMPORTANCE: As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Vaccines, Subunit , Animals , Female , Humans , Mice , Coronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Deltacoronavirus , Swine , Vaccines, Subunit/administration & dosage
18.
J Virol ; 97(10): e0106323, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37732788

ABSTRACT

IMPORTANCE: Porcine epidemic diarrhea (PED) caused by PED virus (PEDV) remains a big threat to the swine industry worldwide. Vaccination with live attenuated vaccine is a promising method to prevent and control PED, because it can elicit a more protective immunity than the killed vaccine, subunit vaccine, and so on. In this study, we found two obvious deletions in the genome of a high passage of AH2012/12. We further confirmed the second deletion which contains seven amino acids at the carboxy-terminus of the S2 gene and the start codon of ORF3 can reduce its pathogenicity in vivo. Animal experiments indicated that the recombinant PEDV with deleted carboxy-terminus of S gene showed higher IgG, IgA, neutralization antibodies, and protection effects against virus challenge than the killed vaccine. These data reveal that the engineering of the carboxy-terminus of the S2 gene may be a promising method to develop live attenuated vaccine candidates of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Diarrhea , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , Swine , Swine Diseases/virology , Vaccines, Attenuated/genetics , Vaccines, Inactivated , Viral Vaccines/genetics , Virulence
19.
ACS Appl Mater Interfaces ; 15(25): 29982-29997, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37330942

ABSTRACT

The COVID-19 pandemic continues to spread worldwide. To protect and control the spread of SARS-CoV-2, varieties of subunit vaccines based on spike (S) proteins have been approved for human applications. Here, we report a new subunit vaccine design strategy that functions as both an antigen carrier and an adjuvant in immunization to elicit high-level immune responses. The complex of 2-hydroxypropyl-trimethylammonium chloride chitosan and amylose entangles Au nanoparticles (HTCC/amylose/AuNPs) forming 40 nm nanocarriers with a positive charge. The obtained positively charged nanoparticles reveal many merits, including the larger S protein loading capacity in PBS buffer, higher cellular uptake ability, and lower cell cytotoxicity, supporting their potential as safe vaccine nanocarriers. Two functionalized nanoparticle subunit vaccines are prepared via loading full-length S proteins derived from SARS-CoV-2 variants. In mice, both prepared vaccines elicit high specific IgG antibodies, neutralize antibodies, and immunoglobulin IgG1 and IgG2a. The prepared vaccines also elicit robust T- and B-cell immune responses and increase CD19+ B cells, CD11C+ dendritic cells, and CD11B+ macrophages at the alveoli and bronchi of the immunized mice. Furthermore, the results of skin safety tests and histological observation of organs indicated in vivo safety of HTCC/amylose/AuNP-based vaccines. Summarily, our prepared HTCC/amylose/AuNP have significant potential as general vaccine carriers for the delivery of different antigens with potent immune stimulation.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Animals , Mice , COVID-19 Vaccines , Amylose , Gold , SARS-CoV-2/metabolism , Pandemics , COVID-19/prevention & control , Adjuvants, Immunologic/pharmacology , Antigens , Adjuvants, Pharmaceutic , Immunoglobulin G , Vaccines, Subunit
20.
Front Neurol ; 14: 1036453, 2023.
Article in English | MEDLINE | ID: mdl-37153669

ABSTRACT

Background: Qihuang needle therapy is a newly developed acupuncture therapy to treat tic disorders in clinical practice. However, the mechanism to reduce tic severity remains unknown. Changes in intestinal flora and circulation metabolites are perhaps the potential pathogenesis of tic disorders. As a result, we present a protocol for a controlled clinical trial using multi-omics analysis to probe the mechanism of the Qihuang needle in managing tic disorders. Methods: This is a matched-pairs design, controlled, clinical trial for patients with tic disorders. Participants will be allocated to either an experimental group or a healthy control group. The main acupoints are Baihui (GV20), Yintang (EX-HN3), and Jueyinshu (BL14). The experimental group will receive Qihuang needle therapy for a month, while the control group will receive no interventions. Expected outcomes: The change in the severity of the tic disorder is set as the main outcome. Secondary outcomes include gastrointestinal severity index and recurrence rate, which will be calculated after a 12-week follow-up. Gut microbiota, measured by 16S rRNA gene sequencing; serum metabolomics, assessed via LC/MS; and serum zonulin, assessed by enzyme-linked immunosorbent assay (ELISA), will be used as biological specimen analysis outcomes. The present study will investigate the possible interactions between intestinal flora and serum metabolites and the improvement of clinical profiles, which may elucidate the mechanism of Qihuang needle therapy for tic disorders. Trial registration: This trial is registered at the Chinese Clinical Trial Registry (http://www.chictr.org.cn/). Registration number: ChiCTR2200057723, Date: 2022-04-14.

SELECTION OF CITATIONS
SEARCH DETAIL