Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Aging (Albany NY) ; 16(11): 9990-10003, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38862258

ABSTRACT

The intermediate phase of spinal cord injury (SCI) serves as an important target site for therapeutic mediation of SCI. However, there is a lack of insight into the mechanism of the intermediate phase of SCI. The present study aimed to investigate the molecular mechanism and the feasible treatment targets in the intermediate phase of SCI. We downloaded GSE2599 from GEO and identified 416 significant differentially expressed genes (DEGs), including 206 downregulated and 210 upregulated DEGs. Further enrichment analysis of DEGs revealed that many important biological processes and signal pathways were triggered in the injured spinal cord. Furthermore, a protein-protein interaction (PPI) network was constructed and the top 10 high-degree hub nodes were identified. Furthermore, 27 predicted transcription factors (TFs) and 136 predicted motifs were identified. We then selected insulin-like growth factor 1 (IGF1) and its predicted transcription factor, transcription factor A, mitochondrial (TFAM) for further investigation. We speculated and preliminarily confirmed that TFAM may regulate gene transcription of IGF1 and effected alterations in the function recovery of rats after SCI. These findings together provide novel information that may improve our understanding of the pathophysiological processes during the intermediate phase of SCI.


Subject(s)
Insulin-Like Growth Factor I , Spinal Cord Injuries , Transcription Factors , Animals , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Rats , Transcription Factors/genetics , Transcription Factors/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Protein Interaction Maps/genetics , Gene Expression Profiling , Spinal Cord/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , Rats, Sprague-Dawley , Gene Expression Regulation , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
2.
Neural Regen Res ; 18(11): 2474-2481, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37282479

ABSTRACT

Maintaining the integrity of the blood-spinal cord barrier is critical for the recovery of spinal cord injury. Ferroptosis contributes to the pathogenesis of spinal cord injury. We hypothesized that ferroptosis is involved in disruption of the blood-spinal cord barrier. In this study, we administered the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal cord injury in rats. Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord injury. Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein. Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury, as shown by the immunofluorescence of an endothelial cell marker (rat endothelium cell antigen-1, RECA-1) and ferroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase. Liproxstatin-1 reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase. Furthermore, inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment. In summary, liproxstatin-1 improved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-spinal cord barrier integrity.

3.
Bioact Mater ; 25: 766-782, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37056263

ABSTRACT

Spinal cord injury (SCI) causes motor, sensory and automatic impairment due to rarely axon regeneration. Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal regenerative ability and disconnection of neural elements after injury, as well as the limited systemic drug delivery efficiency caused by blood spinal cord barrier. To develop an effective non-invasive treatment strategy for SCI in clinic, we generated an autologous plasma exosome (AP-EXO) based biological scaffold where AP-EXO was loaded with neuron targeting peptide (RVG) and growth-facilitating peptides (ILP and ISP). This scaffold can be targeted delivered to neurons in the injured area and elicit robust axon regrowth across the lesion core to the levels over 30-fold greater than naïve treatment, thus reestablish the intraspinal circuits and promote motor functional recovery after spinal cord injury in mice. More importantly, in ex vivo, human plasma exosomes (HP-EXO) loaded with combinatory peptides of RVG, ILP and ISP showed safety and no liver and kidney toxicity in the application to nude SCI mice. Combining the efficacy and safety, the AP-EXO-based personalized treatment confers functional recovery after SCI and showed immense promising in biomedical applications in treating SCI. It is helpful to expand the application of combinatory peptides and human plasma derived autologous exosomes in promoting regeneration and recovery upon SCI treatment.

4.
Cell Biosci ; 13(1): 23, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36739421

ABSTRACT

BACKGROUND: Inflammatory response is an essential part of secondary injury after spinal cord injury (SCI). During this period, the injury may be exacerbated through the release of a large number of inflammatory factors and the polarization of infiltrating macrophages and microglia towards M1. Ang-(1-7), mainly generated by Ang II via angiotensin-converting enzyme 2 (ACE2), can specifically bind to the G protein-coupled receptor Mas (MasR) and plays an important role in regulating inflammation and alleviating oxidative stress. METHODS: We aimed to investigate whether activating the Ang-(1-7)/MasR axis in rats after SCI can regulate local neuroinflammation to achieve functional recovery and obtain its potential mechanism. MasR expression of bone marrow-derived macrophages was determined by Western blot. Immunofluorescence, Western blot, Flow cytometry, and RT-qPCR were applied to evaluate the polarization of Ang-(1-7) on macrophages and the regulation of inflammatory cytokines. Previous evaluation of the spinal cord and bladder after SCI was conducted by hematoxylin-eosin staining, Basso, Beattie, and Bresnahan (BBB) score, inclined plate test, electrophysiology, and catwalk were used to evaluate the functional recovery of rats. RESULTS: MasR expression increased in macrophages under inflammatory conditions and further elevated after Ang-(1-7) treatment. Both in vivo and in vitro results confirmed that Ang-(1-7) could regulate the expression of inflammatory cytokines by down-regulating proinflammatory cytokines and up-regulating anti-inflammatory cytokines, and bias the polarization direction of microglia/macrophages to M2 phenotypic. After SCI, Ang-(1-7) administration in situ led to better histological and functional recovery in rats, and this recovery at least partly involved the TLR4/NF-κB signaling pathway. CONCLUSION: As shown in our data, activating Ang-(1-7)/MasR axis can effectively improve the inflammatory microenvironment after spinal cord injury, promote the polarization of microglia/macrophages towards the M2 phenotype, and finally support the recovery of motor function. Therefore, we suggest using Ang-(1-7) as a feasible treatment strategy for spinal cord injury to minimize the negative consequences of the inflammatory microenvironment after spinal cord injury.

5.
Neural Regen Res ; 18(3): 626-633, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36018187

ABSTRACT

Ferroptosis plays a key role in aggravating the progression of spinal cord injury (SCI), but the specific mechanism remains unknown. In this study, we constructed a rat model of T10 SCI using a modified Allen method. We identified 48, 44, and 27 ferroptosis genes that were differentially expressed at 1, 3, and 7 days after SCI induction. Compared with the sham group and other SCI subgroups, the subgroup at 1 day after SCI showed increased expression of the ferroptosis marker acyl-CoA synthetase long-chain family member 4 and the oxidative stress marker malondialdehyde in the injured spinal cord while glutathione in the injured spinal cord was lower. These findings with our bioinformatics results suggested that 1 day after SCI was the important period of ferroptosis progression. Bioinformatics analysis identified the following top ten hub ferroptosis genes in the subgroup at 1 day after SCI: STAT3, JUN, TLR4, ATF3, HMOX1, MAPK1, MAPK9, PTGS2, VEGFA, and RELA. Real-time polymerase chain reaction on rat spinal cord tissue confirmed that STAT3, JUN, TLR4, ATF3, HMOX1, PTGS2, and RELA mRNA levels were up-regulated and VEGFA, MAPK1 and MAPK9 mRNA levels were down-regulated. Ten potential compounds were predicted using the DSigDB database as potential drugs or molecules targeting ferroptosis to repair SCI. We also constructed a ferroptosis-related mRNA-miRNA-lncRNA network in SCI that included 66 lncRNAs, 10 miRNAs, and 12 genes. Our results help further the understanding of the mechanism underlying ferroptosis in SCI.

6.
Front Cell Neurosci ; 16: 989637, 2022.
Article in English | MEDLINE | ID: mdl-36212687

ABSTRACT

N6-methyladenosine (m6A), an essential post-transcriptional modification in eukaryotes, is closely related to the development of pathological processes in neurological diseases. Notably, spinal cord injury (SCI) is a serious traumatic disease of the central nervous system, with a complex pathological mechanism which is still not completely understood. Recent studies have found that m6A modification levels are changed after SCI, and m6A-related regulators are involved in the changes of the local spinal cord microenvironment after injury. However, research on the role of m6A modification in SCI is still in the early stages. This review discusses the latest progress in the dynamic regulation of m6A modification, including methyltransferases ("writers"), demethylases ("erasers") and m6A -binding proteins ("readers"). And then analyses the pathological mechanism relationship between m6A and the microenvironment after SCI. The biological processes involved included cell death, axon regeneration, and scar formation, which provides new insight for future research on the role of m6A modification in SCI and the clinical transformation of strategies for promoting recovery of spinal cord function.

7.
Front Cell Dev Biol ; 10: 849854, 2022.
Article in English | MEDLINE | ID: mdl-35903552

ABSTRACT

The FDA-approved drug edaravone has a neuroprotective effect on spinal cord injury (SCI) and many other central nervous system diseases. However, its molecular mechanism remains unclear. Since edaravone is a lipid peroxidation scavenger, we hypothesize that edaravone exerts its neuroprotective effect by inhibiting ferroptosis in SCI. Edaravone treatment after SCI upregulates glutathione peroxidase 4 (GPX4) and system Xc-light chain (xCT), which are anti-ferroptosis proteins. It downregulates pro-ferroptosis proteins Acyl-CoA synthetase long-chain family member 4 (ACSL4) and 5-lipoxygenase (5-LOX). The most significant changes in edaravone treatment occur in the acute phase, two days post injury. Edaravone modulates neuronal GPX4/ACSL4/5-LOX in the spinal segment below the lesion, which is critical for maintaining locomotion. Moreover, the GPX4/ACSL4/5-LOX in motor neuron is also modulated by edaravone in the spinal cord. Therefore, secondary injury below the lesion site is reversed by edaravone via ferroptosis inhibition. The cytokine array revealed that edaravone upregulated some anti-inflammatory cytokines such as IL-10, IL-13, and adiponectin. Edaravone reduced microgliosis and astrogliosis, indicating reduced neuroinflammation. Edaravone has a long-term effect on neuronal survival, spinal cord tissue sparing, and motor function recovery. In summary, we revealed a novel mechanism of edaravone in inhibiting neuronal ferroptosis in SCI. This mechanism may be generalizable to other neurological diseases.

8.
J Neuroinflammation ; 19(1): 189, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842640

ABSTRACT

BACKGROUND: Nafamostat mesylate (nafamostat, NM) is an FDA-approved serine protease inhibitor that exerts anti-neuroinflammation and neuroprotective effects following rat spinal cord injury (SCI). However, clinical translation of nafamostat has been limited by an unclear administration time window and mechanism of action. METHODS: Time to first dose of nafamostat administration was tested on rats after contusive SCI. The optimal time window of nafamostat was screened by evaluating hindlimb locomotion and electrophysiology. As nafamostat is a serine protease inhibitor known to target thrombin, we used argatroban (Arg), a thrombin-specific inhibitor, as a positive control in the time window experiments. Western blot and immunofluorescence of thrombin expression level and its enzymatic activity were assayed at different time points, as well its receptor, the protease activated receptor 1 (PAR1) and downstream protein matrix metalloproteinase-9 (MMP9). Blood-spinal cord barrier (BSCB) permeability leakage indicator Evans Blue and fibrinogen were analyzed along these time points. The infiltration of peripheral inflammatory cell was observed by immunofluorescence. RESULTS: The optimal administration time window of nafamostat was 2-12 h post-injury. Argatroban, the thrombin-specific inhibitor, had a similar pattern. Thrombin expression peaked at 12 h and returned to normal level at 7 days post-SCI. PAR1, the thrombin receptor, and MMP9 were significantly upregulated after SCI. The most significant increase of thrombin expression was detected in vascular endothelial cells (ECs). Nafamostat and argatroban significantly downregulated thrombin and MMP9 expression as well as thrombin activity in the spinal cord. Nafamostat inhibited thrombin enrichment in endothelial cells. Nafamostat administration at 2-12 h after SCI inhibited the leakage of Evans Blue in the epicenter and upregulated tight junction proteins (TJPs) expression. Nafamostat administration 8 h post-SCI effectively inhibited the infiltration of peripheral macrophages and neutrophils to the injury site. CONCLUSIONS: Our study provides preclinical information of nafamostat about the administration time window of 2-12 h post-injury in contusive SCI. We revealed that nafamostat functions through inhibiting the thrombin-mediated BSCB breakdown and subsequent peripheral immune cells infiltration.


Subject(s)
Matrix Metalloproteinase 9 , Spinal Cord Injuries , Animals , Benzamidines , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Evans Blue/metabolism , Evans Blue/pharmacology , Guanidines , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Sprague-Dawley , Receptor, PAR-1/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Spinal Cord , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Thrombin/metabolism
9.
Bone Res ; 10(1): 35, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35396505

ABSTRACT

Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.

10.
Neural Regen Res ; 17(6): 1334-1342, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34782579

ABSTRACT

Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury. The subacute phase after spinal cord injury is critical to the recovery of neurological function, which involves tissue bridging and axon regeneration. In this study, we found that zebrafish spontaneously recovered 44% of their swimming ability within the subacute phase (2 weeks) after spinal cord injury. During this period, we identified 7762 differentially expressed genes in spinal cord tissue: 2950 were up-regulated and 4812 were down-regulated. These differentially expressed genes were primarily concentrated in the biological processes of the respiratory chain, axon regeneration, and cell-component morphogenesis. The genes were also mostly involved in the regulation of metabolic pathways, the cell cycle, and gene-regulation pathways. We verified the gene expression of two differentially expressed genes, clasp2 up-regulation and h1m down-regulation, in zebrafish spinal cord tissue in vitro. Pathway enrichment analysis revealed that up-regulated clasp2 functions similarly to microtubule-associated protein, which is responsible for axon extension regulated by microtubules. Down-regulated h1m controls endogenous stem cell differentiation after spinal cord injury. This study provides new candidate genes, clasp2 and h1m, as potential therapeutic intervention targets for spinal cord injury repair by neuroregeneration. All experimental procedures and protocols were approved by the Animal Ethics Committee of Tianjin Institute of Medical & Pharmaceutical Sciences (approval No. IMPS-EAEP-Q-2019-02) on September 24, 2019.

11.
J Orthop Translat ; 31: 33-40, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34760623

ABSTRACT

Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome's advantage is transporting the carried material to the target cells across the blood-brain barrier and exerting regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets, emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-specific therapeutic capabilities of exosomes.

12.
Ann Transl Med ; 9(7): 570, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33987268

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a serious condition that can cause physical disability and sensory dysfunction. Cytokines play an extremely important role in the acute phase of SCI. Clarifying the cytokine expression profile is of great importance. METHODS: Cytokine array analysis was used to explore the changes in 67 different proteins at 0 hours, 2 hours, 1 day, 3 days, and 7 days after acute SCI in rats. The differentially expressed cytokines in the various periods were analyzed and compared. The biological processes related to the differentially expressed proteins were examined using Gene Ontology (GO) analysis. RESULTS: Immediately after SCI (0 hours), only ciliary neurotrophic factor (CNTF) was slightly up-regulated, while 23 other proteins were down-regulated. At 2 hours after SCI, there were 3 upregulated and 21 downregulated proteins. At 1 day after SCI, there were 5 upregulated and 6 downregulated proteins. At 3 days after SCI, there were 6 upregulated and 4 downregulated proteins. At 7 days after SCI, there were 4 upregulated and 9 downregulated proteins. Erythropoietin (EPO) and Fms related tyrosine kinase 3 ligand (Flt-3L) were downregulated at all time points. CD48 was decreased at 2 hours to 7 days after SCI. Monocyte chemotactic protein-1 (MCP-1) was the only protein that was upregulated at 2 hours to 7 days. The GO and pathway analyses revealed that the cytokine-related pathways, cell death, and proliferation might play a key role during secondary SCI. CONCLUSIONS: This study identified 3 downregulated proteins during SCI, that being EPO, Flt-3L, and CD48. MCP-1 was the only upregulated protein, and its expression was upregulated till day 7 following SCI. These 4 identified genes may be potential therapeutic targets for the treatment of SCI.

13.
Ann Transl Med ; 9(6): 489, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33850886

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) leads to severe physical disability and sensory dysfunction. Neurotropin (NTP) has been used clinically to alleviate neuropathic pain, while nafamostat mesylate (NM) used clinical on pancreatitis patients through inhibiting synthetic serine protease. Our previous studies showed that NTP and NM were able to repair SCI. However, the underlying mechanism has not been fully explored after treatment with these 2 different drugs. METHODS: The drugs NTP and NM were administered on a contusion SCI Wistar rat model. Cytokine array analysis was performed to describe the changes of 67 proteins after acute SCI. Hierarchical clustering and volcano plot analysis were conducted to clarify protein change profiles. The differently expressed proteins related to biological processes were analyzed by functional protein association networks, Gene Ontology and pathway analysis. Flow cytometric analysis was detected to reflect the activation of immune system after drug intervention, while withdrawal threshold and BBB score were detected to evaluated the mechanical allodynia and functional recovery after SCI. RESULTS: HGF, ß-NGF, and activin were the 3 most upregulated proteins, while the receptor for RAGE, IL-1α, and TNF-α were the 3 most downregulated proteins after NTP treatment. Adiponectin, decorin and CTACK were the 3 most upregulated proteins, while RAGE, IL-1α, and IL-1ß were the 3 most downregulated proteins in the NM group. Number of lymphocytes was decreased while BBB score was increased both in NTP and NM group. But only NTP could improve mechanical pain threshold after SCI. CONCLUSIONS: The PI3K-Akt, Jak-STAT signaling pathway and apoptosis might participate in SCI restoration by NTP, while the MAPK and NOD-like receptor signaling pathway may participated in repairing SCI with NM. We concluded that NTP regulated the microenvironment via a neuroprotective effect and inhibition of inflammation to repair SCI, while NM healed SCI through an anti-inflammatory effect. Both NTP and NM could down-regulate the activation of immune system and improve the functional recovery while only NTP could improve the pathological neuralgia after SCI. Elucidating the molecular mechanisms of these 2 clinical drugs indicates that they their expected to be effective clinical treatment for SCI.

14.
J Orthop Translat ; 26: 74-83, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437626

ABSTRACT

BACKGROUND/OBJECTIVE: Spinal cord injury (SCI) severely and irreversibly damages the central nervous system. Neurotropin (NTP), a nonprotein extract obtained from inflamed rabbit skin inoculated with vaccinia virus, is a drug that has been used for more than sixty years to alleviate neuropathic pain. It also reportedly exerts a neuroprotective role in peripheral nerves and in response to various central nervous system diseases, such as brain injury and Alzheimer disease. However, whether NTP promotes SCI recovery remains unknown. This study evaluated NTP's effects after SCI and explored its underlying mechanisms in a rat contusion model of SCI. METHOD: NTP was intraperitoneally administered to adult female Wistar rats subjected to contusion-induced SCI. Functional recovery was evaluated with behavioural scores and electrophysiological examinations. Tissue recovery was assessed with magnetic resonance imaging as well as histological staining with haematoxylin and eosin and Luxol Fast Blue. Neuronal survival and gliosis were observed after NeuN and glial fibrillary acidic protein immunofluorescence. Levels of apoptosis were demonstrated with TdT-mediated dUTP nick-end labeling (TUNEL) staining, Caspase-3 and B-cell lymphoma-2 (Bcl-2) Western blot, and Annexin V/propidium iodide flow cytometry. A protein antibody chip analysis was performed to evaluate the expression levels of 67 rat cytokines. RESULTS: NTP treatment improved the hindlimb locomotor recovery of the injured animals as well as their electrophysiological outcomes after SCI. A dosage of 50 NTP units/kg was found to optimize the efficacy of NTP. Magnetic resonance imaging revealed that lesion sizes decreased after NTP treatment. The haematoxylin and eosin and Luxol Fast Blue staining showed significant increases in the amount of spared tissue. The NeuN and glial fibrillary acidic protein immunofluorescence revealed that NTP treatment increased neuronal survival and reduced gliosis in tissue samples obtained from the lesion's epicentre. That NTP inhibited apoptosis was confirmed by the decreased number of TUNEL-positive cells, level of Caspase-3 expression, and number of Annexin V/propidium iodide-positive cells, as well as the increased level of Bcl-2 expression. The protein array analysis identified 28 differentially expressed proteins in the NTP group, and the gene ontology (GO) analysis showed that the enriched differentially expressed proteins implicate janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathways. The expression levels of proinflammatory cytokines such as interleukin 6, thymus chemokine-1(TCK-1), and lipopolysaccharide-induced CXC chemokine (LIX) decreased after NTP treatment, whereas the levels of prorepair cytokine hepatocyte growth factor and adiponectin increased. CONCLUSION: Our research provides evidence that NTP can improve functional outcomes and alleviate secondary injury after SCI by inhibiting apoptosis and modulating cytokines. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The multicomponent NTP might have broad target spectra in SCI pathophysiology and halt the secondary injury cascade. As a safe drug that features sixty years of clinical use as an analgesic, translating this demonstrated efficacy of NTP to addressing SCI in human patients may potentially be accelerated.

15.
Exp Ther Med ; 21(1): 48, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33273976

ABSTRACT

Schwann cells are unique glial cells in the peripheral nervous system. These cells provide a range of cytokines and nutritional factors to maintain axons and support axonal regeneration. However, little is known concerning adhesion-associated epigenetic changes that occur in Schwann cells after peripheral nerve injury (PNI). In the present study, adhesion-associated DNA methylation biomarkers were assessed between normal and injury peripheral nerve. Specifically, normal Schwann cells (NSCs) and activated Schwann cells (ASCs) were obtained from adult Wistar rats. After the Schwann cells were identified, proliferation and adhesion assays were used to assess differences between NSCs and ASCs. Methylated DNA immunoprecipitation-sequencing and bioinformatics analysis were used to identify and analyze the differentially methylated genes. Reverse transcription-quantitative PCR was performed to assess the expression levels of adhesion-associated genes. In the present study, the proliferation and adhesion assays demonstrated that ASCs had a more robust proliferative activity and adhesion compared with NSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify methylation-associated biological processes and signaling pathways. Protein-protein interaction network analysis revealed that Fyn, Efna1, Jak2, Vav3, Flt4, Epha7, Crk, Kitlg, Ctnnb1 and Ptpn11 were potential markers for Schwann cell adhesion. The expression levels of several adhesion-associated genes, such as vinculin, BCAR1 scaffold protein, collagen type XVIII α1 chain and integrin subunit ß6, in ASCs were altered compared with those in NSCs. The current study analyzed adhesion-associated DNA methylation patterns of Schwann cells and identified candidate genes that may potentially regulate Schwann cell adhesion in Wistar rats before and after PNI.

16.
Neural Regen Res ; 16(3): 561-566, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32985488

ABSTRACT

Our previous studies showed that ferroptosis plays an important role in the acute and subacute stages of spinal cord injury. High intracellular iron levels and low glutathione levels make oligodendrocytes vulnerable to cell death after central nervous system trauma. In this study, we established an oligodendrocyte (OLN-93 cell line) model of ferroptosis induced by RSL-3, an inhibitor of glutathione peroxidase 4 (GPX4). RSL-3 significantly increased intracellular concentrations of reactive oxygen species and malondialdehyde. RSL-3 also inhibited the main anti-ferroptosis pathway, i.e., SLC7A11/glutathione/glutathione peroxidase 4 (xCT/GSH/GPX4), and downregulated acyl-coenzyme A synthetase long chain family member 4. Furthermore, we evaluated the ability of several compounds to rescue oligodendrocytes from ferroptosis. Liproxstatin-1 was more potent than edaravone or deferoxamine. Liproxstatin-1 not only inhibited mitochondrial lipid peroxidation, but also restored the expression of GSH, GPX4 and ferroptosis suppressor protein 1. These findings suggest that GPX4 inhibition induces ferroptosis in oligodendrocytes, and that liproxstatin-1 is a potent inhibitor of ferroptosis. Therefore, liproxstatin-1 may be a promising drug for the treatment of central nervous system diseases.

17.
Neural Regen Res ; 15(8): 1539-1545, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31997820

ABSTRACT

The iron chelator deferoxamine has been shown to inhibit ferroptosis in spinal cord injury. However, it is unclear whether deferoxamine directly protects neurons from ferroptotic cell death. By comparing the survival rate and morphology of primary neurons and SH-SY5Y cells exposed to erastin, it was found that these cell types respond differentially to the duration and concentration of erastin treatment. Therefore, we studied the mechanisms of ferroptosis using primary cortical neurons from E16 mouse embryos. After treatment with 50 µM erastin for 48 hours, reactive oxygen species levels increased, and the expression of the cystine/glutamate antiporter system light chain and glutathione peroxidase 4 decreased. Pretreatment with deferoxamine for 12 hours inhibited these changes, reduced cell death, and ameliorated cellular morphology. Pretreatment with the apoptosis inhibitor Z-DEVD-FMK or the necroptosis inhibitor necrostain-1 for 12 hours did not protect against erastin-induced ferroptosis. Only deferoxamine protected the primary cortical neurons from ferroptosis induced by erastin, confirming the specificity of the in vitro ferroptosis model. This study was approved by the Animal Ethics Committee at the Institute of Radiation Medicine of the Chinese Academy of Medical Sciences, China (approval No. DWLL-20180913) on September 13, 2018.

18.
Neural Regen Res ; 14(8): 1462-1469, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30964074

ABSTRACT

Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesenchymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis identified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathways were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).

19.
Mol Cell Biochem ; 457(1-2): 51-59, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30830528

ABSTRACT

Exosomes are nanometer-sized vesicles involved in intercellular communication, and they are released by various cell types. To learn about exosomes produced by Schwann cells (SCs) and to explore their potential function in repairing the central nervous system (CNS), we isolated exosomes from supernatants of SCs by ultracentrifugation, characterized them by electron microscopy and immunoblotting and determined their protein profile using proteomic analysis. The results demonstrated that Schwann cell-derived exosomes (SCDEs) were, on average, 106.5 nm in diameter, round, and had cup-like concavity and expressed exosome markers CD9 and Alix but not tumor susceptibility gene (TSG) 101. We identified a total of 433 proteins, among which 398 proteins overlapped with the ExoCarta database. According to their specific functions, we identified 12 proteins that are closely related to CNS repair and classified them by different potential mechanisms, such as axon regeneration and inflammation inhibition. Gene Oncology analysis indicated that SCDEs are mainly involved in signal transduction and cell communication. Biological pathway analysis showed that pathways are mostly involved in exosome biogenesis, formation, uptake and axon regeneration. Among the pathways, the neurotrophin, PI3K-Akt and cAMP signaling pathways played important roles in CNS repair. Our study isolated SCDEs, unveiled their contents, presented potential neurorestorative proteins and pathways and provided a rich proteomics data resource that will be valuable for future studies of the functions of individual proteins in neurodegenerative diseases.


Subject(s)
Exosomes/metabolism , Nerve Tissue Proteins/biosynthesis , Proteomics , Schwann Cells/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Animals , Biomarkers/metabolism , Exosomes/pathology , Male , Rats , Rats, Wistar , Schwann Cells/pathology , Sciatic Nerve/pathology
20.
J Spinal Cord Med ; 42(2): 178-183, 2019 03.
Article in English | MEDLINE | ID: mdl-29595401

ABSTRACT

CONTEXT/OBJECTIVE: The objective of the research was to illustrate the epidemiology profile of thoracolumbar fracture (TLF) in Tianjin Medical University General Hospital, China, from 2006-2015. DESIGN: Hospital-based retrospective study. SETTING: Tianjin Medical University General Hospital. METHODS: Medical records of inpatient patients with TLF from 1 January 2006 to December 2015 were collected. Detailed information on epidemiological characters were analyzed based on the medical records suffering from TLF from T11-L2 level, including incidence, age and sex, marital, occupation, etiology and fracture type, types of injuries. RESULTS: Totally 132 cases were identified. The incidence rate was 2.4 patient per million population at 2015. Male-to-female ratio was 1.4:1, with a mean age of 49.1 ± 17.7 years. The cases number in 46-60 group, totally 35 and accounting for 26.5%, was the largest. There is a significant differences of cases number between 2011-2015 group and 2006-2010 group. Retiree, taken up 48.5%, was the largest group among TLF patients. The most common injury level was T12 (34) accounting for 25.7%. Falls (57, 43.2%) (low falls and high falls) were the leading causes, followed by motor vehicle collisions (MVCs) (23, 17.4%).Compression is the only type of osteoporosis and took up 55.3%. CONCLUSIONS: The incidence ratio is increased annually in TMUGH. Male was more vulnerable than female based on different social character. The average age was older in 2011-2015, retiree accounted for the main proportion and compression took up the largest percentage, the mean age increased and osteoporosis takes more in recent years.


Subject(s)
Lumbar Vertebrae/injuries , Spinal Fractures/epidemiology , Thoracic Vertebrae/injuries , Adolescent , Adult , Aged , Aged, 80 and over , China/epidemiology , Female , Hospitals, General/statistics & numerical data , Humans , Incidence , Male , Middle Aged , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...