Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 264(Pt 1): 130537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432275

ABSTRACT

This study aimed to investigate the structural characteristics, in vivo antiatherosclerosis activity, and in vitro myocardial injury protection effects of polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Thus, crude polysaccharides of Allium macrostemon Bunge and Allium chinense G. Don significantly reduced serum lipid levels, improved cardiac myocyte morphology and arrangement, and relieved the development of myocardial fibrosis. Meanwhile, the lesion areas of the aorta and aortic valve had evident visual improvements. Furthermore, two main novel purified polysaccharides, namely, AMB-1 and ACGD-1, were isolated and characterized from crude Allium macrostemon Bunge and Allium chinense G. Don fractions, respectively. The purified polysaccharides mainly consisted of fructose and glucose and had molecular weights of 25.22 and 19.53 kDa, respectively. In addition, Fourier transform infrared spectroscopy, methylation, and nuclear magnetic resonance data revealed the primary structures of the AMB1 (or ACGD1) backbone with branched side chains. Scanning electron microscope analysis showed that the purified polysaccharides were both piled together in a lamellar or clastic form with a smooth surface along with linear or irregular bulges. Moreover, the purified polysaccharides both showed nontoxicity on H9c2 cells and effectively dropped hypoxia/reoxygenation-induced apoptosis by the BCL-2/BAX pathway. Overall, the characterization of the structural properties and in vivo and in vitro myocardial injury protection effects of Allium macrostemon Bunge and Allium chinense G. Don polysaccharides enriched our understanding of their nutritional and medicinal values. To the best of our knowledge, this is the first study on the structural characteristics and bioactivities of Allium chinense G. Don polysaccharides.


Subject(s)
Chive , Onions , Polysaccharides , Magnetic Resonance Spectroscopy , Polysaccharides/pharmacology
2.
Heliyon ; 9(11): e22276, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053901

ABSTRACT

Cysteine (Cys), one of the important participants in protecting cells from oxidative stress, is closely associated with the occurrence and development of various diseases. Moreover, cell viscosity as a pivotal microenvironmental parameter has recently attracted increasing attention due to its dominant role in governing intracellular signal transduction and diffusion of reactive metabolites. Thus, simultaneous detection of Cys and viscosity is imperative for investigating their pathophysiological functions and cross-link. Herein we present a mitochondria-targetable dual-channel fluorescence probe ABDSP by grafting the acrylate modified pyridinium unit to dimethylaminobenzene. Whilst the probe is a seemingly simple, it could simultaneously discriminate Cys and viscosity in a fashion of distinguishable signals. Furthermore, the probe was successfully employed for visualizing mitochondrial Cys and viscosity, and probe into their cross-link during acetaminophen-induced hepatotoxicity.

3.
Molecules ; 28(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138611

ABSTRACT

Paeoniflorin (PAE) is the main active compound of Radix Paeoniae Rubra (a valuable traditional Chinese medicine and a dietary supplement) and exerts beneficial effects on female reproductive function. However, the actions of PAE on diminished ovarian reserve (DOR, a very common ovarian function disorder) are still unclear. Herein, our study investigated the effect and potential mechanism of PAE on DOR by using cisplatin-induced DOR mice and functional impairment of estradiol (E2) synthesis of ovarian granulosa-like KGN cells. Our data show that PAE improved the estrous cycle, ovarian index, and serum hormones levels, including E2, and the number of antral follicles and corpora lutea in DOR mice. Further mechanism results reveal that PAE promoted aromatase expression (the key rate-limiting enzyme for E2 synthesis) and upregulated the FSHR/cAMP/PKA/CREB signaling pathway in the ovaries. Subsequently, PAE improved the levels of E2 and aromatase and activated the FSHR/cAMP/PKA/CREB signaling pathway in KGN cells, while these improving actions were inhibited by the siRNA-FSHR and FSHR antagonist treatments. In sum, PAE restored the function of E2 synthesis in ovarian granulosa cells to improve DOR by activating the FSHR/cAMP/PKA/CREB signaling pathway, which exhibited a new clue for the development of effective therapeutic agents for the treatment of DOR.


Subject(s)
Cisplatin , Ovarian Reserve , Female , Mice , Animals , Cisplatin/pharmacology , Aromatase/genetics , Aromatase/metabolism , Granulosa Cells/metabolism , Signal Transduction
4.
Nat Prod Res ; : 1-7, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37820042

ABSTRACT

A series of C21 steroidal glycosides were isolated from the root bark of Periploca sepium, including a new compound, perisepiumoside A1 (1), and six known compounds (2-7). Their structures were elucidated by analysis of HR-ESI-MS, and 1D and 2D NMR spectroscopic data. All these compounds were tested for their NO production inhibitory activity in LPS-stimulated RAW 264.7 cells. Results showed that these C21 steroidal glycosides could remarkably inhibit NO production, particularly 1 and 2 with IC50 values of 30.81 ± 0.18 µM and 44.39 ± 0.21 µM, respectively. In addition, the cytotoxicity of these compounds was measured on A549, MCF-7, and HeLa cancer cell lines. Among them, compounds 1 and 7 displayed cytotoxicity against the A549 cell line with IC50 values of 28.41 ± 0.12 µM and 39.06 ± 0.05 µM, respectively.

5.
Chin J Nat Med ; 21(6): 411-422, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37407172

ABSTRACT

Alkaloids are a class of naturally occurring bioactive compounds that are widely distributed in various food sources and Traditional Chinese Medicine. This study aimed to investigate the therapeutic effects and underlying mechanisms of alkaloid extract from Codonopsis Radix (ACR) in ameliorating hepatic lipid accumulation in a mouse model of non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD). The results revealed that ACR treatment effectively mitigated the abnormal weight gain and hepatic injury associated with HFD. Furthermore, ACR ameliorated the dysregulated lipid metabolism in NAFLD mice, as evidenced by reductions in serum triglyceride, total cholesterol, and low-density lipoprotein levels, accompanied by a concomitant increase in the high-density lipoprotein level. ACR treatment also demonstrated a profound anti-oxidative effect, effectively alleviating HFD-induced oxidative stress and promoting ATP production. These effects were achieved through the up-regulation of the activities of mitochondrial electron transfer chain complexes I, II, IV, and V, in addition to the activation of the AMPK/PGC-1α pathway, suggesting that ACR exhibits therapeutic potential in alleviating the HFD-induced dysregulation of mitochondrial energy metabolism. Moreover, ACR administration mitigated HFD-induced endoplasmic reticulum (ER) stress and suppressed the overexpression of ubiquitin-specific protease 14 (USP14) in NAFLD mice. In summary, the present study provides compelling evidence supporting the hepatoprotective role of ACR in alleviating lipid deposition in NAFLD by improving energy metabolism and reducing oxidative stress and ER stress. These findings warrant further investigation and merit the development of ACR as a potential therapeutic agent for NAFLD.


Subject(s)
Alkaloids , Antineoplastic Agents , Codonopsis , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Lipid Metabolism , Antineoplastic Agents/pharmacology , Alkaloids/pharmacology , Endoplasmic Reticulum Stress , Energy Metabolism , Lipids , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
6.
J Sep Sci ; 46(17): e2300331, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37438987

ABSTRACT

An efficient strategy for the identification of potential nephroprotective substances in Zhu-Ling decoction has been established with the integration of absorbed components characterization, pharmacokinetics, and activity evaluation. A qualitative method was developed to characterize the chemical constituents absorbed components in vivo of Zhu-Ling decoction by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A quantitative method was established and validated for the simultaneous determination of eight compounds in rat plasma by using ultra-performance liquid chromatography-triple quadruple tandem mass spectrometry. Finally, the nephroprotective activities of absorbed components with high exposure were assessed by cell survival rate, superoxide dismutase, and malondialdehyde activities in hydrogen peroxide-induced Vero cells. As a result, 111 compounds in Zhu-Ling decoction and 36 absorbed components were identified in rat plasma and urine, and poricoic acid A, poricoic acid B, alisol A, 16-oxo-alisol A, and dehydro-tumulosic acid had high exposure levels in rat plasma. Finally, poricoic acid B, poricoic acid A, 16-oxo-alisol A, and dehydro-tumulosic acid showed remarkable nephroprotective activity against Vero cells damage induced by hydrogen peroxide. Besides, superoxide dismutase and malondialdehyde activities were obviously regulated in hydrogen peroxide-induced Vero cells by treatment with the four compounds mentioned above. Therefore, these four compounds were considered to be effective substances of Zhu-Ling decoction due to their relatively high exposure in vivo and biological activity. This study provided a chemical basis for the action mechanism of Zhu-Ling decoction in the treatment of chronic kidney diseases.


Subject(s)
Drugs, Chinese Herbal , Triterpenes , Chlorocebus aethiops , Rats , Animals , Hydrogen Peroxide , Vero Cells , Mass Spectrometry/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods
7.
Phytochem Anal ; 34(5): 528-539, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37139685

ABSTRACT

INTRODUCTION: Alismatis rhizoma (AR), a distinguished diuretic traditional Chinese herbal medicine, is widely used for the treatment of diarrhea, edema, nephropathy, hyperlipidemia, and tumors in clinical settings. Most beneficial effects of AR are attributed to the major triterpenoids, whose contents are relatively high in AR. To date, only 25 triterpenoids in AR have been characterized by LC-MS because the low-mass diagnostic ions are hardly triggered in MS, impeding structural identification. Herein, we developed an advanced data post-processing method with abundant characteristic fragments (CFs) and neutral losses (NLs) for rapid identification and classification of the major triterpenoids in AR by UPLC-Q-TOF-MSE . OBJECTIVE: We aimed to establish a systematic method for rapid identification and classification of the major triterpenoids of AR. METHODS: UPLC-Q-TOF-MSE coupled with an advanced data post-processing method was established to characterize the major triterpenoids of AR. The abundant CFs and NLs of different types of triterpenoids were discovered and systematically summarized. The rapid identification and classification of the major triterpenoids of AR were realized by processing the data and comparing with information described in the literature. RESULTS: In this study, a total of 44 triterpenoids were identified from AR, including three potentially new compounds and 41 known ones, which were classified into six types. CONCLUSION: The newly established approach is suitable for the chemical profiling of the major triterpenoids in AR, which could provide useful information about chemical constituents and a basis for further exploration of its active ingredients in vivo.


Subject(s)
Drugs, Chinese Herbal , Triterpenes , Tandem Mass Spectrometry/methods , Triterpenes/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/chemistry
8.
J Pharm Biomed Anal ; 223: 115157, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36379101

ABSTRACT

Qi-Lin pill (QLP) is an effective traditional Chinese medicine prescription (TCMP) that has been used for the treatment of the oligoasthenozoospermia in China. Recently, some articles described the pharmacological effects of QLP and multiple ingredients in QLP contribute to its effects. However, the pharmacokinetic and target tissue distribution data of QLP are still unknown. In the present study, according to the Bioanalytical Method Validation Guidance of FDA, a sensitive and selective UPLC-MS/MS method was developed and validated for simultaneous determination of multiple constituents in rat plasma and testicular tissue, including morusimic acid A, codonopyrridium B, magnoflorine, emodin, 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), ecliptasaponin A, paeoniflorin, albiflorin, gallic acid, danshensu, salvianolic acid A, catechin, isosinensetin, nobiletin, formononetin, calycosin, icariside II, icariin and epimedin C. For 19 analytes, the LLOQs reached 0.01-4 ng/mL. And all calibration curves showed favorable linearity (r ≥ 0.9903) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.92 %, and the accuracies (as relative error) were in the range of - 6.44 % to 6.22 %. Extraction recoveries and matrix effects of analytes and IS were acceptable. All analytes were stable during the assay and storage in plasma samples. The method was successfully applied for the pharmacokinetics and testis distribution of multiple chemical constituents in QLP after a single oral dose. As a result, high exposure of danshensu, gallic acid, paeoniflorin and albiflorin were observed in rat plasma and testicular tissue. Among the flavonoids, isosinensetin and nobiletin had high exposure in testicular tissue. Moreover, alleviation of progesterone reduction was evaluated in H2O2-induced R2C leydig cells, and danshensu, gallic acid, paeoniflorin, albiflorin and nobiletin showed potent activity. Therefore, these five components were considered to be the effective components of QLP due to their relatively high exposure in vivo and biological activity. This finding also provided relevant information on action mechanism of QLP in the treatment of oligoasthenozoospermia.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Animals , Male , Rats , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/pharmacokinetics , Gallic Acid , Hydrogen Peroxide , Reproducibility of Results , Tandem Mass Spectrometry/methods , Testis , Tissue Distribution
9.
J Sep Sci ; 46(2): e2200723, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401831

ABSTRACT

Codonopsis radix was commonly used as food materials or herbal medicines in many countries. However, the comprehensive analysis of chemical constituents, and in vivo xenobiotics of Codonopsis radix remain unclear. In the present study, an integrated strategy with feature-based molecular networking using ultra-high-performance liquid chromatography coupled with mass spectrometry was established to systematically screen the chemical constituents and the in vivo xenobiotics of Codonopsis radix. A step-by-step manner based on a composition database, visual structure classification, discriminant ions, and metabolite software prediction was proposed to overcome the complexities due to the similar structure of chemical constituents and metabolites of Codonopsis radix. As a result, 103 compounds were tentatively characterized, 20 of which were identified by reference standards. Besides, a total of 50 xenobiotics were detected in vivo, including 26 prototypes and 24 metabolites, while the metabolic features of the pyrrolidine alkaloids were elucidated for the first time. The metabolism reactions of pyrrolidine alkaloids and sesquiterpene lactones included oxidation, methylation, hydration, hydrogenation, demethylation, glucuronidation, and sulfation. This study provided a generally applicable approach to the comprehensive investigation of the chemical and metabolic profile of traditional Chinese medicine and offered reasonable guidelines for further screening of quality control indicators and pharmacodynamics mechanism of Codonopsis radix.


Subject(s)
Alkaloids , Codonopsis , Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/analysis , Codonopsis/chemistry , Codonopsis/metabolism , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Xenobiotics/metabolism , Mass Spectrometry/methods , Alkaloids/chemistry , Pyrrolidines
11.
Chin J Nat Med ; 20(12): 948-960, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36549808

ABSTRACT

Codonopsis pilosula (CP), a well-known food medicine homology plant, is commonly used in many countries. In our preliminary study, a series of pyrrolidine alkaloids with high MS responses were detected as characteristic absorbed constituents in rat plasma after oral administration of CP extract. However, their structures were unclear due to the presence of various isomers and the lack of reference standards. In the present study, an MS-guided targeted isolation of pyrrolidine alkaloids of CP extract was performed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS). For data analysis under fast data directed acquisition mode (Fast-DDA), an effective approach named characteristic fragmentation-assisted mass spectral networking was successfully applied to discover new pyrrolidine alkaloids with high MS response in CP extract. As a result, seven new pyrrolizidine alkaloids [codonopyrrolidiums C-I (3-9)], together with two known ones (1 and 2), were isolated and identified by NMR spectral analysis. Among them, codonopyrrolidium B (1), codonopyrrolidium D (4) and codonopyrrolidium E (5) were evaluated for lipid-lowering activity, and they could improve high fructose-induced lipid accumulation in HepG2 cells. In addition, the characteristic MS/MS fragmentation patterns of these pyrrolizidine alkaloids were investigated, and 17 pyrrolidine alkaloids were identified. This approach could accelerate novel natural products discovery and characterize a class of natural products with MS/MS fragmentation patterns from similar chemical scaffolds. The research also provides a chemical basis for revealingin vivo effective substances in CP.


Subject(s)
Alkaloids , Codonopsis , Plants, Medicinal , Pyrrolizidine Alkaloids , Animals , Rats , Codonopsis/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Pyrrolidines/pharmacology , Pyrrolidines/analysis , Lipids
12.
J Integr Med ; 20(4): 365-375, 2022 07.
Article in English | MEDLINE | ID: mdl-35534381

ABSTRACT

OBJECTIVE: Qili Qiangxin (QLQX), a compound herbal medicine formula, is used effectively to treat congestive heart failure in China. However, the molecular mechanisms of the cardioprotective effect are still unclear. This study explores the cardioprotective effect and mechanism of QLQX using the hypoxia-reoxygenation (H/R)-induced myocardial injury model. METHODS: The main chemical constituents of QLQX were analyzed using high-performance liquid chromatography-evaporative light-scattering detection. The model of H/R-induced myocardial injury in H9c2 cells was developed to simulate myocardial ischemia-reperfusion injury. Apoptosis, autophagy, and generation of reactive oxygen species (ROS) were measured to assess the protective effect of QLQX. Proteins related to autophagy, apoptosis and signalling pathways were detected using Western blotting. RESULTS: Apoptosis, autophagy and the excessive production of ROS induced by H/R were significantly reduced after treating the H9c2 cells with QLQX. QLQX treatment at concentrations of 50 and 250 µg/mL caused significant reduction in the levels of LC3II and p62 degradation (P < 0.05), and also suppressed the AMPK/mTOR signalling pathway. Furthermore, the AMPK inhibitor Compound C (at 0.5 µmol/L), and QLQX (250 µg/mL) significantly inhibited H/R-induced autophagy and apoptosis (P < 0.01), while AICAR (an AMPK activator, at 0.5 mmol/L) increased cardiomyocyte apoptosis and autophagy and abolished the anti-apoptotic effect of QLQX. Similar phenomena were also observed on the expressions of apoptotic and autophagic proteins, demonstrating that QLQX reduced the apoptosis and autophagy in the H/R-induced injury model via inhibiting the AMPK/mTOR pathway. Moreover, ROS scavenger, N-Acetyl-L-cysteine (NAC, at 2.5 mmol/L), significantly reduced H/R-triggered cell apoptosis and autophagy (P < 0.01). Meanwhile, NAC treatment down-regulated the ratio of phosphorylation of AMPK/AMPK (P < 0.01), which showed a similar effect to QLQX. CONCLUSION: QLQX plays a cardioprotective role by alleviating apoptotic and autophagic cell death through inhibition of the ROS/AMPK/mTOR signalling pathway.


Subject(s)
AMP-Activated Protein Kinases , Autophagic Cell Death , AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagy , Drugs, Chinese Herbal , Herbal Medicine , Humans , Hypoxia/drug therapy , Hypoxia/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
J Cell Mol Med ; 26(9): 2607-2619, 2022 05.
Article in English | MEDLINE | ID: mdl-35365949

ABSTRACT

Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)-mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)-stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy-related proteins. Meanwhile, PM markedly down-regulated AngII-induced translocation of p-STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I-201 or siRNA-mediated depleted expression could alleviate AngII-induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy-related proteins and phosphorylated STAT3 in STAT3-overexpressing cells, indicating that PM protected against AngII-induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC-induced cardiac hypertrophy, as determined by down-regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy-related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy.


Subject(s)
Cardiac Glycosides , Heart Failure , Animals , Cardiac Glycosides/metabolism , Cardiac Glycosides/pharmacology , Cardiac Glycosides/therapeutic use , Cardiomegaly/metabolism , Heart Failure/metabolism , Mice , Myocytes, Cardiac/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction
14.
J Sep Sci ; 45(13): 2177-2189, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35478323

ABSTRACT

In the present study, a specific and sensitive approach using ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was developed and validated for the quantitative analysis of 14 constituents in rat plasma, liver, and heart. The method was fully validated and successfully applied to pharmacokinetic, hepatic disposition, and heart tissue distribution studies of 14 compounds after the oral administration of Qi-Li-Qiang-Xin capsule. Ginsenoside Rb1, alisol A, astragaloside IV, and periplocymarin were found to be highly exposed in rat plasma, while toxic components such as hypaconitine, mesaconitine, and periplocin had low circulation levels in vivo. Moreover, sinapine thiocyanate, neoline, formononetin, calycosin, and alisol A exhibited significant liver first-pass effects. Notably, high levels of alisol A, periplocymarin, benzoylmesaconine, and benzoylhypaconine were observed in the heart. Based on high exposure and appropriate pharmacokinetic features in the systemic plasma and heart, astragaloside IV, ginsenoside Rb1, periplocymarin, benzoylmesaconine, benzoylhypaconine, and alisol A can be considered as the main potentially effective components. Ultimately, the results provide relevant information for discovery of effective substances, as well as further anti-heart failure action mechanism investigations of Qi-Li-Qiang-Xin capsule.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Liver/chemistry , Rats , Tandem Mass Spectrometry/methods , Tissue Distribution
15.
Phytomedicine ; 85: 153535, 2021 May.
Article in English | MEDLINE | ID: mdl-33819766

ABSTRACT

BACKGROUND: Quality control exerted great importance on the clinical application of drugs for ensuring effectiveness and safety. Due to chemical complexity, diversity among different producing areas and harvest seasons, as well as unintentionally mixed with non-medicinal parts, the current quality standards of traditional Chinese medicine (TCM) still faced challenges in evaluating the overall chemical consistency. PURPOSE: We aimed to develop a new strategy to discover potential quality marker (Q-marker) of TCM by integrating plant metabolomics and network pharmacology, using Periplocae Cortex (GP, the dried root bark of Periploca sepium Bge.) as an example. METHODS: First, plant metabolomics analysis was performed by UPLC/Q-TOF MS in 89 batches of samples to discover chemical markers to distinguish medicinal parts (GP) and non-medicinal parts (the dried stem bark of Periploca sepium Bge. (JP)), harvest seasons and producing region of Periplocae Cortex. Second, network pharmacology was applied to explore the initial linkages among chemical constituents, targets and diseases. Last, potential Q-marker were selected by integrating analysis of plant metabolomics and network pharmacology, and the quantification method of Q-marker was developed by using UPLC-TQ-MS. RESULTS: The chemical profiling of GP and JP was investigated. Fifteen distinguishing features were designated as core chemical markers to distinguish GP and JP. Besides, the content of 4-methoxybenzaldehyde-2-O-ß-d-xylopyranosyl-(1→6)-ß-d-glucopyranoside could be used to identify Periplocae Cortex harvested in spring-autumn or summer. Meanwhile, a total of 15 components targeted rheumatoid arthritis were screened out based on network pharmacology. Taking absorbed constituents into consideration, 23 constituents were selected as potential Q-marker. A simultaneous quantification method (together with 11 semi-quantitative analysis) was developed and applied to the analysis of 20 batches of commercial Periplocae Cortex on the market. The PLS-DA model was successfully developed to distinguish GP and JP samples. In addition, the artificially mixed GP sample, which contained no less than 10% of the adulterant (JP), could also be correctly identified. CONCLUSION: Our results indicated that 9 ingredients could be considered as Q-marker of Periplocae Cortex. This study has also demonstrated that the plant metabolomics and network pharmacology could be used as an effective approach for discovering Q-marker of TCM to fulfill the evaluation of overall chemical consistency among samples from different producing areas, harvest seasons, and even those commercial crude drugs, which might be mixed with a small amount of non-medicinal parts.


Subject(s)
Drugs, Chinese Herbal/chemistry , Metabolomics , Periploca/chemistry , Quality Control , Animals , Biomarkers , China , Chromatography, High Pressure Liquid , Drug Contamination , Mass Spectrometry , Medicine, Chinese Traditional/standards , Mice , Plant Roots/chemistry , RAW 264.7 Cells
16.
Phytomedicine ; 82: 153443, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33429210

ABSTRACT

BACKGROUND: Qiliqiangxin Capsule (QLQX), a traditional Chinese medicine (TCM) prescription, is especially used for clinical treatment of chronic heart failure (CHF) in China. However, the holistic quality control of QLQX has not been well established due to lack of system research on the quality marker (Q-marker). PURPOSE: In this study, a new strategy of multi-dimensional "radar chart" mode was proposed to overcome the problem that traditional methods cannot evaluate the multiple properties of Q-markers comprehensively and visually, and the strategy was successfully applied to discover the Q-markers of QLQX. METHODS: First, nineteen prototypes that entered the in vivo systemic circulation were selected out as the candidate Q-markers based on our previous studies of chemical and in vivo metabolic profiles. Then, their contents in QLQX were quantitatively analyzed by UHPLC-MS/MS, and the bioactivities on the H9c2 cardiomyocytes cell model was evaluated. The network of in vivo component-target closely related to CHF was further constructed. Finally, a multi-dimensional "radar chart" mode was developed and corresponding Regression Area (RA) and Coefficient Variation (CV) were calculated after data standardization and integration visually based on the Q-marker related multiple characteristics (including the compatibility contribution of herbal medicines, the content, the bioactivity, the in vivo predicted bioavailability and the degree of network pharmacology of candidate components in the TCM prescription). RESULTS: By comparison of RA and CV of the chemicals in the "radar chart", seven compounds mainly from King and Minister herbs (songorin, calycosin-7-O-ß-D-glucopyranoside, astragaloside, tanshinone IIA, ginsenoside Re, hesperidin and alisol A) were screened out as the Q-markers of QLQX, showing the reasonable compatibility contribution and high content in QLQX, preferable pharmacological effect on CHF, as well as good bioavailable characteristics and high target hits in system pharmacology. CONCLUSION: The Q-marker discovery of QLQX in this study laid an important foundation for its quality control improvement, and the mode standardized the abstract definitions of Q-marker and realized the comprehensive assessment of multiple properties of Q-marker in TCM prescriptions, which has a reference value for revealing the Q-marker in the quality control researches of TCM prescriptions.


Subject(s)
Drugs, Chinese Herbal/analysis , Heart Failure/drug therapy , Medicine, Chinese Traditional , Biomarkers/analysis , Chronic Disease , Drugs, Chinese Herbal/therapeutic use , Humans , Quality Control , Tandem Mass Spectrometry
17.
J Cell Mol Med ; 24(2): 1332-1344, 2020 01.
Article in English | MEDLINE | ID: mdl-31811750

ABSTRACT

Fuziline, an aminoalcohol-diterpenoid alkaloid derived from Aconiti lateralis radix preparata, has been reported to have a cardioprotective activity in vitro. However, the potential mechanism of fuziline on myocardial protection remains unknown. In this study, we aimed to explore the efficacy and mechanism of fuziline on isoproterenol (ISO)-induced myocardial injury in vitro and in vivo. As a result, fuziline effectively increased cell viability and alleviated ISO-induced apoptosis. Meanwhile, fuziline significantly decreased the production of ROS, maintained mitochondrial membrane potential (MMP) and blocked the release of cytochrome C, suggesting that fuziline could play the cardioprotective role through restoring the mitochondrial function. Fuziline also could suppress ISO-induced endoplasmic reticulum (ER) stress via the PERK/eIF2α/ATF4/Chop pathway. In addition, using ROS scavenger NAC could decrease ISO-induced apoptosis and block ISO-induced ER stress, while PERK inhibitor GSK2606414 did not reduce the production of ROS, indicating that excess production of ROS induced by ISO triggered ER stress. And fuziline protected against ISO-induced myocardial injury by inhibiting ROS-triggered ER stress. Furthermore, fuziline effectively improved cardiac function on ISO-induced myocardial injury in rats. Western blot analysis also showed that fuziline reduced ER stress-induced apoptosis in vivo. Above these results demonstrated that fuziline could reduce ISO-induced myocardial injury in vitro and in vivo by inhibiting ROS-triggered ER stress via the PERK/eIF2α/ATF4/Chop pathway.


Subject(s)
Alkaloids/pharmacology , Diterpenes/pharmacology , Endoplasmic Reticulum Stress , Gene Expression Regulation/drug effects , Isoproterenol/toxicity , Myocardial Reperfusion Injury/drug therapy , Reactive Oxygen Species/metabolism , Aconitum/chemistry , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Adrenergic beta-Agonists/toxicity , Animals , Apoptosis , Male , Myocardial Reperfusion Injury/chemically induced , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
18.
Front Pharmacol ; 10: 1329, 2019.
Article in English | MEDLINE | ID: mdl-31780944

ABSTRACT

Background: Apoptosis and autophagy are two important patterns of cell death in the process of heart failure. Qi-Li-Qiang-Xin (QLQX), a traditional Chinese medicine, has been frequently used in the treatment of chronic heart failure (CHF) in China. However, the potential effect of QLQX on autophagy has not been reported. In this study, we aimed to investigate whether QLQX alleviated isoproterenol (ISO)-induced myocardial injury through regulating autophagy. Methods: The rapid identification of chemical ingredients of QLQX was performed by UPLC-Q-TOF-MS, and the contents of major constituents in QLQX were also measured by UPLC-Q-TOF-MS. ISO was used to induce myocardial injury in H9c2 cardiomyocytes and SD rats. In vivo, cardiac function was evaluated by echocardiography and cardiac structure was observed by HE and Masson staining. Expressions of Bcl-2, Bax, LC3, P62, AKT, p-AKT, mTOR, and p-mTOR were detected by western blotting. In vitro, H9c2 cells were pretreated with QLQX for 3 h before ISO (80 µM, 48h) addressed. Cell viability, LDH and CK-MB release, apoptosis ratio, and the level of autophagy were measured. Western blotting was also performed to detected related protein expressions. Result: In vivo, treatment by QLQX significantly improved cardiac function and alleviated ISO-induced myocardial structural damage. In addition, QLQX markedly decreased apoptosis and inhibited autophagic activity, accompanied by activating the AKT/mTOR pathway. In vitro, the increased cell apoptosis induced by ISO was paralleling with the gradually increasing level of autophagy. Furthermore, 3-MA, an autophagic inhibitor, could block ISO-induced autophagy in H9c2 cells. Our results suggested that both QLQX and 3-MA treatment could decrease cell death induced by ISO, implying that QLQX protected against ISO-induced myocardial injury possibly by inhibiting excessive autophagy-mediated cell death. In addition, blockage of AKT signaling by an AKT inhibitor, capivasertib, could reduce the effect of QLQX on inhibiting ISO-induced apoptosis and autophagy-mediated cell death. Conclusion: QLQX could alleviate ISO-induced myocardial injury by inhibiting apoptosis and excessive autophagy-mediated cell death via activating the AKT/mTOR pathway.

19.
Fitoterapia ; 139: 104375, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31629050

ABSTRACT

Picrasamide A (1), a new cinnamamide derivative, together with two new ß-carboline alkaloids (2 and 3) and five known ß-carboline alkaloids (4-8) were isolated from the stems of Picrasma quassioides (D. Don) Benn. Their structures were elucidated by detailed analyses of UV, IR, HRESIMS, and NMR data. Compound 1 was the first case of cinnamamide derivative from genus Picrasma. The AChE inhibitory activity and the antimicrobial activity of 1-8 were assessed. In addition, preliminary structure-activity relationships of these ß-carboline alkaloids on the AChE inhibitory activity and antimicrobial activity were proposed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Cinnamates/pharmacology , Picrasma/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Anti-Bacterial Agents/isolation & purification , Carbolines/isolation & purification , Carbolines/pharmacology , China , Cholinesterase Inhibitors/isolation & purification , Cinnamates/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Stems/chemistry , Structure-Activity Relationship
20.
Article in English | MEDLINE | ID: mdl-29787993

ABSTRACT

Qi-Li-Qiang-Xin capsule (QLQX), a well-known traditional Chinese medicine prescription (TCMP), is consisted of eleven commonly used herbal medicines, has been widely used for the treatment of chronic heart failure (CHF). However, the absorbed components and related metabolites after oral administration of QLQX are still remaining unknown. In the present work, a reliable and effective method using ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) was established to identify QLQX-related xenobiotics in rats. Based on a representative structure based homologous xenobiotics identification (RSBHXI) strategy, a total of eleven compounds (salvianolic acid B, formononetin, benzoylmesaconine, alisol A, sinapine thiocyanate, naringin, tanshinone IIA, ginsenoside Rg1, ginsenoside Rb1, astragaloside IV and periplocin), bearing different chemical core structures, were selected and investigated for their metabolism in vivo. And then, comprehensive metabolic profiles of the holistic multi-ingredients in QLQX were achieved. As a result, a total of 121 QLQX-related xenobiotics (47 prototypes and 74 metabolites) were identified or tentatively characterized, among them eight prototypes (mesaconine, hypaconine, songorine, fuziline, neoline, talatizamine formononetin, neocryptotanshinone) and two metabolites (calycosin-gluA, formononetin-guA) were relatively the main existing xenobiotics exposed in blood. All absorbed prototype constituents were mainly from six composed herbal medicines (Aconiti lateralis radix, Astragali radix, Ginseng radix, Alismatis rhizoma, Salvia miltiorrhiza radix, Periploca cortex). The main metabolic reactions were methylation, hydrogenation, hydroxylation, oxidization, sulfation and glucuronidation. This is the first study on in vivo metabolism of QLQX. These results enabled us to focus on several high exposure ingredients in the discovery of effective substances of QLQX, however further pharmacokinetic study on these QLQX-related xenobiotics are needed to be carried out.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/pharmacokinetics , Tandem Mass Spectrometry/methods , Xenobiotics/analysis , Xenobiotics/pharmacokinetics , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Feces/chemistry , Male , Rats , Rats, Sprague-Dawley , Xenobiotics/chemistry , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...