Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 463(Pt 2): 141172, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260019

ABSTRACT

The threat posed by organophosphorus pesticides (OPS) to food safety, human health, and the ecological environment is significant, which underscoring the need for the development of new detection tools. We designed and synthesized a NIR fluorescent probe PT-CES which targets carboxylesterase (CES), for the detection of OPS based on the principle of enzyme inhibition. The PT-CES is capable of instantaneous response to CES, exhibiting excellent stability, anti-interference capability. PT-CES realizes the quantitative detection of CES and OPS. It is noteworthy that PT-CES shows excellent stable and accurate detection ability in vegetable pesticide testing. It also enables the monitoring of CES activity in cells and liver tissue. This provides a novel tool for tracking the effect of OPS on CES activity in biological systems. Furthermore, it provides a useful method for ensuring food safety and enhancing pesticide residue analysis.

2.
J Agric Food Chem ; 72(37): 20615-20621, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39238336

ABSTRACT

Pesticide residues pose a significant threat to food safety and human health, necessitating the development of novel detection tools. Pesticides can inhibit the activity of certain biological enzymes, so enzyme inhibition is one of the methods of pesticide detection. In this study, we developed a novel near-infrared fluorescent probe named TCFCl-CES based on the tricyanofuran structure, for ultrasensitive detection of carboxylesterase (CES). TCFCl-CES exhibits strong and stable fluorescence, excellent specificity. Notably, the fluorescence intensity of TCFCl-CES shows a linear relationship with CES concentration, achieving an exceptionally low detection limit of 4.41 × 10-5 u/mL. This ultrasensitive probe can also effectively detect pesticide residues in vegetables and monitor CES activity in cells and liver tissues. TCFCl-CES stands out for its rapid and accurate detection capabilities, making it an essential tool for accurately monitoring pesticide residue. It also has great potential for tracking CES activity in biological systems. Additionally, it offers a robust solution for food safety and improving pesticide residue analysis.


Subject(s)
Carboxylesterase , Fluorescent Dyes , Food Contamination , Pesticide Residues , Vegetables , Fluorescent Dyes/chemistry , Pesticide Residues/analysis , Pesticide Residues/chemistry , Food Contamination/analysis , Humans , Carboxylesterase/metabolism , Carboxylesterase/chemistry , Vegetables/chemistry , Limit of Detection , Animals , Optical Imaging/methods
3.
Food Chem ; 455: 139976, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850978

ABSTRACT

Amino acids are important chiral compounds in the human body, and are important basic components that make up the human body and play an important role in the human body. Among them, different enantiomers of an amino acid may have different roles, and different types of amino acids can be interconverted. However, the content of D-amino acids is much lower than that of L-amino acids, which is difficult to be detected. At present, many of the potential roles of D-amino acids, such as the conversion of D-amino acids to each other, have not yet been fully revealed. Hence, we synthesized fluorescent probe (R)-5 by condensation of 1,1'-Bi-2-naphthol (BINOL) and 2-(Aminomethyl)pyridine with Schiff base, which can recognize both D-arginine and D-glutamic acid at low concentrations. Meanwhile, (R)-5 can be applied to paper-based sensors for the detection of arginine and glutamate in living cells and for food amino acid detection.


Subject(s)
Arginine , Fluorescent Dyes , Glutamic Acid , Fluorescent Dyes/chemistry , Glutamic Acid/chemistry , Glutamic Acid/analysis , Arginine/chemistry , Arginine/analysis , Humans , Stereoisomerism , Naphthols/chemistry
4.
ACS Appl Mater Interfaces ; 16(22): 28342-28352, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38636480

ABSTRACT

Solid-state electrolytes (SSEs) based on sulfides have become a subject of great interest due to their superior Li-ion conductivity, low grain boundary resistance, and adequate mechanical strength. However, they grapple with chemical instability toward moisture hypersensitivity, which decreases their ionic conductivity, leading to more processing requirements. Herein, a Li9.8GeP1.7Sb0.3S11.8I0.2 (LGPSSI) superionic conductor is designed with a Li+ conductivity of 6.6 mS cm-1 and superior air stability based on hard and soft acids and bases (HSAB) theory. The introduction of optimal antimony (Sb) and iodine (I) into the Li10GeP2S12 (LGPS) structure facilitates fast Li-ion migration with low activation energy (Ea) of 20.33 kJ mol-1. The higher air stability of LGPSSI is credited to the strategic substitution of soft acid Sb into (Ge/P)S4 tetrahedral sites, examined by Raman and X-ray photoelectron spectroscopy techniques. Relatively lower acidity of Sb compared to phosphorus (P) realizes a stronger Sb-S bond, minimizing the evolution of toxic H2S (0.1728 cm3 g-1), which is ∼3 times lower than pristine LGPS when LGPSSI is exposed to moist air for 120 min. The NCA//Li-In full cell with a LGPSSI superionic conductor delivered the first discharge capacity of 209.1 mAh g-1 with 86.94% Coulombic efficiency at 0.1 mA cm-2. Furthermore, operating at a current density of 0.3 mA cm-2, LiNbO3@NCA/LGPSSI/Li-In cell demonstrated an exceptional reversible capacity of 117.70 mAh g-1, retaining 92.64% of its original capacity over 100 cycles.

5.
iScience ; 25(9): 104964, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36060051

ABSTRACT

D-amino acids are of biological significance yet are not clearly understood due to the lack of powerful analytical tools for their identification. Thus, the specific detection of a single enantiomer of a particular amino acid remains a great challenge due to their structural similarity. Here, we report a strategy to incorporate multiple reaction sites on a chiral 1,1'-bi-2,2'-naphthol-based fluorescent probe. It can respond specifically to D-arginine, while producing no response when in contact with all other amino acids. The probe can report arginine's concentration, and enantiomeric configuration and colorimetric studies enable its qualitative determination.

6.
Org Biomol Chem ; 20(25): 5035-5044, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35661854

ABSTRACT

In recent years, gold-catalyzed cycloadditions of allenes, especially those involving a gold carbene intermediate, have received significant interest, as they avoid the utilization of potentially hazardous and inaccessible diazo compounds as starting materials for carbene generation. Cycloaddition reactions consisting of the uncomplicated addition of two or more unsaturated functional groups are one of the most efficient synthetic methodologies for the rapid assembly of carbo- and heterocyclic structures from simple acyclic precursors. In this review, we introduce an overview of the advances in the gold-catalyzed cycloaddition of allenes via a metal carbene intermediate and categorize these reactions according to the reaction types of the cycloadditions.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(5): 1300-5, 2015 May.
Article in English | MEDLINE | ID: mdl-26415448

ABSTRACT

Recently, the problem of food security is more and more serious, and people pay attention to mercury because of the toxic of it. A new approach for the determination of mercury content in foodstuff is devised. In this paper, first, we design and synthesis a new kind of fluorescent probe whose matrix based on rhodamine B, hydrazine hydrate and hydroxy benzaldehyde. Through the analysis of H-NMR spectra of the synthesized product L1, we confirm that the synthetic substance is the adjacent carboxyl benzaldehyde hydrazone structure generation of rhodamine B. Then, we measure the fluorescence signal intensity of the probe with different concentrations of mercury ions fully upon complexation by fluorescence spectrometer and we can study the relationship between the mercury ion concentration and the fluorescence intensity and draw the standard working curve. Following, It's time to discuss the microwave digestion processing of tea, after digestion we use the synthetic probe Li for determination of mercury content in tea. The experimental results show that the maximum excitation wavelength of the probe and coordination compound are 568. 05 and 560. 00 nm, the maximum emission wavelength are 587. 94 and 580. 00 nm. Then we can find the best testing conditions to improve the degree of accuracy, that is: room temperature, 50% the methanol solution, 3. 0 mL pH 4. 0 buffer solution, in the extent of 30 min. The experimental results show that Na+, K+, Ca2+, Cu2+, Zn2+, Al3+ have little impact on the fluorescence intensity of the:probe. Fe3+, Mg2+, Ba2+ has a weak enhancement to the fluorescence intensity of the probe. While a low concentrations of Hg2+ have an obviously enhanced effect on the fluorescence intensity of the probe. In contrast to other metal ions, the probe for Hg2+ has a good selectivity. Linear relationship between the magnitude of increase in fluorescence intensity and concentration of mercury ion was in the range of 5~20 ng . L-1 with detection limit (3S/N) of 1. 9 ng . L-1. The proposed method was applied to determination of mercury ion in samples of tea and sausage and the obtained result and sample recovery were all satisfactory. The methods of analysis instrument has the advantages of simple structure, sensitivity, high accuracy, good selectivity and less volume of simple, without the need for enrichment, being very practical.


Subject(s)
Fluorescent Dyes/chemistry , Food Analysis/methods , Mercury/analysis , Rhodamines/chemistry , Spectrometry, Fluorescence , Buffers , Hydrogen-Ion Concentration , Ions , Limit of Detection
8.
Angew Chem Int Ed Engl ; 51(31): 7821-4, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22744889

ABSTRACT

Across bonds: The first successful iridium-catalyzed asymmetric hydroalkynylation of nonpolar alkenes with good to excellent enantioselectivity is described (see scheme; cod = 1,5-cyclooctadiene, DCE = 1,2-dichloroethane). This catalytic system exhibits good functional group compatibility as NH(2), OH, Br, F, and SiMe(3) groups remain intact during the reaction.


Subject(s)
Alkynes/chemical synthesis , Bridged-Ring Compounds/chemistry , Iridium/chemistry , Norbornanes/chemistry , Organometallic Compounds/chemistry , Alkynes/chemistry , Catalysis , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL