Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 130(3): 358-368, 2024 02.
Article in English | MEDLINE | ID: mdl-38097742

ABSTRACT

BACKGROUND: This study aimed to investigate the underlying mechanisms of matricellular protein periostin (POSTN) on tumour-stroma crosstalk in the liver metastatic microenvironment of colorectal cancer (CRC). METHODS: Postn-knockout mice and hepatic Postn-overexpressing mice were used to investigate the functions of POSTN on the formation of fibrotic microenvironment and the tumour-stroma crosstalk in the liver metastatic microenvironment of CRC. Clinical samples and database were analyzed to show the correlation between POSTN expression and fibrotic features and TGF-ß signalling in metastatic livers of CRC. RESULTS: POSTN deficiency reduced hepatic stellate cell (HSC) activation and liver metastasis, whereas POSTN overexpression in the liver significantly augmented the formation of a fibrotic microenvironment to support the liver metastatic growth of CRC cells in mice. Moreover, HSC-derived POSTN promoted TGF-ß1 expression in CRC cells through the integrin/FAK/ERK/STAT3 pathway; conversely, tumour cell-derived TGF-ß1 induced POSTN expression in HSCs via the Smad pathway. POSTN levels correlated with fibrotic features and TGF-ß signalling in metastatic liver tissues of CRC patients. CONCLUSIONS: POSTN and TGF-ß1 cooperatively contribute to the tumour-stroma crosstalk by forming a supporting fibrotic microenvironment to promote liver metastasis of CRC cells via the POSTN/integrin/FAK/ERK/STAT3/TGF-ß axis in tumour cells and TGF-ß/Smad/POSTN signalling in activated HSCs.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , Colorectal Neoplasms/pathology , Integrins/metabolism , Liver/metabolism , Liver Neoplasms/pathology , Periostin , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment
2.
Sci Signal ; 16(790): eadf1947, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339182

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-ß signaling, activation of the TGF-ß receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-ß type I receptor (TßRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-ß signaling 1) that was not only increased but also perpetuated by TGF-ß signaling. Loss of LETS1 attenuated TGF-ß-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-ß-SMAD signaling by stabilizing cell surface TßRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TßRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-ß receptor complexes.


Subject(s)
Neoplasms , RNA, Long Noncoding , Animals , Humans , Transforming Growth Factor beta/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Receptors, Transforming Growth Factor beta/genetics , Cell Movement/genetics
3.
EMBO J ; 42(10): e112806, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36994542

ABSTRACT

Epithelial cells acquire mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) during cancer progression. However, how epithelial cells retain their epithelial traits and prevent malignant transformation is not well understood. Here, we report that the long noncoding RNA LITATS1 (LINC01137, ZC3H12A-DT) is an epithelial gatekeeper in normal epithelial cells and inhibits EMT in breast and non-small cell lung cancer cells. Transcriptome analysis identified LITATS1 as a TGF-ß target gene. LITATS1 expression is reduced in lung adenocarcinoma tissues compared with adjacent normal tissues and correlates with a favorable prognosis in breast and non-small cell lung cancer patients. LITATS1 depletion promotes TGF-ß-induced EMT, migration, and extravasation in cancer cells. Unbiased pathway analysis demonstrated that LITATS1 knockdown potently and selectively potentiates TGF-ß/SMAD signaling. Mechanistically, LITATS1 enhances the polyubiquitination and proteasomal degradation of TGF-ß type I receptor (TßRI). LITATS1 interacts with TßRI and the E3 ligase SMURF2, promoting the cytoplasmic retention of SMURF2. Our findings highlight a protective function of LITATS1 in epithelial integrity maintenance through the attenuation of TGF-ß/SMAD signaling and EMT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Plasticity , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/metabolism , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/genetics , Receptor, Transforming Growth Factor-beta Type I
4.
Signal Transduct Target Ther ; 7(1): 126, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35484112

ABSTRACT

Ovo-like transcriptional repressor 1 (OVOL1) is a key mediator of epithelial lineage determination and mesenchymal-epithelial transition (MET). The cytokines transforming growth factor-ß (TGF-ß) and bone morphogenetic proteins (BMP) control the epithelial-mesenchymal plasticity (EMP) of cancer cells, but whether this occurs through interplay with OVOL1 is not known. Here, we show that OVOL1 is inversely correlated with the epithelial-mesenchymal transition (EMT) signature, and is an indicator of a favorable prognosis for breast cancer patients. OVOL1 suppresses EMT, migration, extravasation, and early metastatic events of breast cancer cells. Importantly, BMP strongly promotes the expression of OVOL1, which enhances BMP signaling in turn. This positive feedback loop is established through the inhibition of TGF-ß receptor signaling by OVOL1. Mechanistically, OVOL1 interacts with and prevents the ubiquitination and degradation of SMAD family member 7 (SMAD7), which is a negative regulator of TGF-ß type I receptor stability. Moreover, a small-molecule compound 6-formylindolo(3,2-b)carbazole (FICZ) was identified to activate OVOL1 expression and thereby antagonizing (at least in part) TGF-ß-mediated EMT and migration in breast cancer cells. Our results uncover a novel mechanism by which OVOL1 attenuates TGF-ß/SMAD signaling and maintains the epithelial identity of breast cancer cells.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA-Binding Proteins , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Receptor, Transforming Growth Factor-beta Type I/genetics , Transcription Factors , Transforming Growth Factor beta/genetics
5.
Methods Mol Biol ; 2488: 47-65, 2022.
Article in English | MEDLINE | ID: mdl-35347682

ABSTRACT

Epithelial to mesenchymal transition (EMT) is crucial during embryonic development, tissue fibrosis, and cancer progression. Epithelial cells that display a cobblestone-like morphology can undergo a switch to mesenchymal-like phenotype, displaying an elongated spindle shape or a fibroblast-like morphology. EMT is characterized by timely and reversible alterations of molecular and cellular processes. The changes include loss of epithelial and gain of mesenchymal marker expression, loss of polarity, increased cell migratory and invasive properties. Epithelial cells can progress unevenly during this transition and attain hybrid E/M states or metastable EMT states, referred to as epithelial cell plasticity. To gain a deeper insight into the mechanism of EMT, understanding the dynamic aspects of this process is essential. One of the most prominent factors to induce EMT is the cytokine transforming growth factor-ß (TGF-ß). This chapter discusses molecular and cellular techniques to monitor TGF-ß-induced signaling and EMT changes in normal and cancer cell lines. These methods include measuring the TGF-ß-induced activation of its intracellular SMAD effectors proteins and changes in epithelial/mesenchymal marker expression and localization. Moreover, we describe assays of cell migration and dynamic reorganization of the actin cytoskeleton and stress filaments that are frequently part of the TGF-ß-induced EMT cellular response.


Subject(s)
Epithelial-Mesenchymal Transition , Transforming Growth Factor beta , Epithelial Cells , Epithelial-Mesenchymal Transition/genetics , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
6.
Oncotarget ; 10(41): 4192-4204, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31289617

ABSTRACT

MicroRNAs (miRNAs) are a group of small non-coding RNAs that directly bind to the 3'-untranslated-region (3'UTR) of mRNA, thereby blocking gene expression post-transcriptionally. Accumulating evidence prove that microRNA-873 (miR-873) functions as a promoter or suppressor in various cancers, while whether it affects the progression of colorectal cancer (CRC) is yet unknown. Here we found that miR-873 was downregulated in human CRC clinical samples, mouse CRC specimens and cell lines with high metastatic potential. We also demonstrated that low miR-873 expression was closely associated with poor prognosis of CRC. Overexpressing miR-873 suppressed proliferation and metastasis of CRC cells both in vitro and in vivo, while inhibiting miR-873 expression promoted the proliferation, migration and invasion in vitro. Moreover, miR-873 exerted its function by perturbing the ERK-CyclinD1 pathway and the epithelial-mesenchymal transition (EMT) process. Furthermore, we revealed that miR-873 acted as a tumor-suppressive microRNA by directly binding to the 3'UTRs of ELK1 and STRN4 and suppressed their expression. Our study uncovered an inhibitory role of miR-873 in CRC progression and might provide a promising marker for CRC diagnosis and prognosis.

7.
Biochem Biophys Res Commun ; 476(4): 607-613, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27264952

ABSTRACT

miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasion while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , GRB2 Adaptor Protein/genetics , MicroRNAs/genetics , 3' Untranslated Regions , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Down-Regulation , Female , GRB2 Adaptor Protein/metabolism , Gene Expression , Gene Silencing , Humans , MCF-7 Cells , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Signal Transduction/genetics , ras Proteins/metabolism
8.
Oncotarget ; 7(16): 21825-39, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26968810

ABSTRACT

miR-543 has been implicated as having a critical role in the development of breast cancer, endometrial cancer and hepatocellular carcinoma. However, the exact clinical significance and biological functions of miR-543 in colorectal cancer (CRC) remain unclear. Here, we found that miR-543 expression significantly downregulated in tumors from patients with CRC, APCMin mice and a mouse model of colitis-associated colon cancer. miR-543 level was inversely correlated with the metastatic status of patients with CRC and the metastatic potential of CRC cell lines. Moreover, ectopic expression of miR-543 inhibited the proliferation and metastasis of CRC cells in vitro and in vivo by targeting KRAS, MTA1 and HMGA2. Conversely, miR-543 knockdown promoted the proliferation, migration and invasion of CRC cells in vitro and augmented tumor growth and metastasis in vivo. Furthermore, we found that miR-543 expression was negatively correlated with the levels of KRAS, MTA1 and HMGA2 in clinical samples. Collectively, these data show that miR-543 inhibits the proliferation and metastasis of CRC cells by targeting KRAS, MTA1 and HMGA2. Our study highlights a pivotal role for miR-543 as a suppressor in the regulation of CRC growth and metastasis and suggests that miR-543 may serve as a novel diagnostic and prognostic biomarker for CRC metastasis.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , HMGA2 Protein/genetics , Histone Deacetylases/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Repressor Proteins/genetics , 3' Untranslated Regions/genetics , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , HCT116 Cells , HEK293 Cells , HMGA2 Protein/metabolism , HT29 Cells , Histone Deacetylases/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Middle Aged , Neoplasm Metastasis , Proto-Oncogene Proteins p21(ras)/metabolism , Repressor Proteins/metabolism , Trans-Activators , Transplantation, Heterologous , Tumor Burden/drug effects , Tumor Burden/genetics
9.
Sci Rep ; 5: 9995, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25919570

ABSTRACT

MicroRNAs are a class of small noncoding RNAs that regulate gene expression post-transcriptionally either by inhibiting protein translation or by causing the degradation of target mRNAs. Current evidence indicates that miR-33b is involved in the regulation of lipid metabolism, cholesterol homeostasis, glucose metabolism and several human diseases; however, whether miR-33b contributes to the pathogenesis of human cancers and participates in the regulation of self-renewal of human cancer stem cells remains unknown. Here, we report the identification of miR-33b as a negative regulator of cell stemness and metastasis in breast cancer. Compared with paired normal breast tissues, miR-33b expression is downregulated in breast tumor samples and is inversely correlated with lymph node metastatic status. Ectopic overexpression of miR-33b in highly metastatic breast cancer cells suppresses cell self-renewal, migration and invasion in vitro and inhibits lung metastasis in vivo. Conversely, miR-33b knockdown promotes the self-renewal, migration and invasion capabilities of noncancerous mammary epithelial cells. The mechanism through which miR-33b inhibits the stemness, migration and invasion of breast cancer cells is by targeting HMGA2, SALL4 and Twist1. These data indicate that miR-33b acts as an onco-suppressive microRNA in breast cancer progression by inhibiting the stemness and metastasis of breast cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/secondary , HMGA2 Protein/metabolism , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Twist-Related Protein 1/metabolism , Breast Neoplasms/pathology , Female , HMGA2 Protein/genetics , Humans , MCF-7 Cells , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Proteins/genetics , Protein Binding , Transcription Factors/genetics , Twist-Related Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...