Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Hematol Oncol ; 17(1): 45, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886748

ABSTRACT

BACKGROUND: p53, the most frequently mutated gene in cancer, lacks effective targeted drugs. METHODS: We developed monoclonal antibodies (mAbs) that target a p53 hotspot mutation E285K without cross-reactivity with wild-type p53. They were delivered using lipid nanoparticles (LNPs) that encapsulate DNA plasmids. Western blot, BLI, flow cytometry, single-cell sequencing (scRNA-seq), and other methods were employed to assess the function of mAbs in vitro and in vivo. RESULTS: These LNP-pE285K-mAbs in the IgG1 format exhibited a robust anti-tumor effect, facilitating the infiltration of immune cells, including CD8+ T, B, and NK cells. scRNA-seq revealed that IgG1 reduces immune inhibitory signaling, increases MHC signaling from B cells to CD8+ T cells, and enriches anti-tumor T cell and B cell receptor profiles. The E285K-mAbs were also produced in the dimeric IgA (dIgA) format, whose anti-tumor activity depended on the polymeric immunoglobulin receptor (PIGR), a membrane Ig receptor, whereas that of IgG1 relied on TRIM21, an intracellular IgG receptor. CONCLUSIONS: Targeting specific mutant epitopes using DNA-encoded and LNP-delivered mAbs represents a potential precision medicine strategy against p53 mutants in TRIM21- or PIGR-positive cancers.


Subject(s)
Antibodies, Monoclonal , Mutation , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/immunology , Tumor Suppressor Protein p53/genetics , Animals , Humans , Mice , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , Nanoparticles/chemistry , Cell Line, Tumor
2.
PLoS Biol ; 22(6): e3002666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905316

ABSTRACT

Breast cancer is the most prevalent malignancy and the most significant contributor to mortality in female oncology patients. Potassium Two Pore Domain Channel Subfamily K Member 1 (KCNK1) is differentially expressed in a variety of tumors, but the mechanism of its function in breast cancer is unknown. In this study, we found for the first time that KCNK1 was significantly up-regulated in human breast cancer and was correlated with poor prognosis in breast cancer patients. KCNK1 promoted breast cancer proliferation, invasion, and metastasis in vitro and vivo. Further studies unexpectedly revealed that KCNK1 increased the glycolysis and lactate production in breast cancer cells by binding to and activating lactate dehydrogenase A (LDHA), which promoted histones lysine lactylation to induce the expression of a series of downstream genes and LDHA itself. Notably, increased expression of LDHA served as a vicious positive feedback to reduce tumor cell stiffness and adhesion, which eventually resulted in the proliferation, invasion, and metastasis of breast cancer. In conclusion, our results suggest that KCNK1 may serve as a potential breast cancer biomarker, and deeper insight into the cancer-promoting mechanism of KCNK1 may uncover a novel therapeutic target for breast cancer treatment.


Subject(s)
Breast Neoplasms , Cell Proliferation , Histones , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Histones/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Prognosis , Up-Regulation/genetics
3.
Nat Sci Sleep ; 16: 413-428, 2024.
Article in English | MEDLINE | ID: mdl-38699466

ABSTRACT

Objective: Obstructive sleep apnea (OSA) is a common and potentially fatal sleep disorder. The purpose of this study was to construct an objective and easy-to-promote model based on common clinical biochemical indicators and demographic data for OSA screening. Methods: The study collected the clinical data of patients who were referred to the Sleep Medicine Center of the Second Affiliated Hospital of Fujian Medical University from December 1, 2020, to July 31, 2023, including data for demographics, polysomnography (PSG), and 30 biochemical indicators. Univariate and multivariate analyses were performed to compare the differences between groups, and the Boruta method was used to analyze the importance of the predictors. We selected and compared 10 predictors using 4 machine learning algorithms which were "Gaussian Naive Bayes (GNB)", "Support Vector Machine (SVM)", "K Neighbors Classifier (KNN)", and "Logistic Regression (LR)". Finally, the optimal algorithm was selected to construct the final prediction model. Results: Among all the predictors of OSA, body mass index (BMI) showed the best predictive efficacy with an area under the receiver operating characteristic curve (AUC) = 0.699; among the predictors of biochemical indicators, triglyceride-glucose (TyG) index represented the best predictive performance (AUC = 0.656). The LR algorithm outperformed the 4 established machine learning (ML) algorithms, with an AUC (F1 score) of 0.794 (0.841), 0.777 (0.827), and 0.732 (0.788) in the training, validation, and testing cohorts, respectively. Conclusion: We have constructed an efficient OSA screening tool. The introduction of biochemical indicators in ML-based prediction models can provide a reference for clinicians in determining whether patients with suspected OSA need PSG.

4.
J Exp Clin Cancer Res ; 43(1): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769583

ABSTRACT

A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.


Subject(s)
Mitochondria , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Mitochondria/metabolism , Tumor Microenvironment , Animals , Nanotubes
5.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654320

ABSTRACT

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Subject(s)
Nasopharyngeal Carcinoma , Rad51 Recombinase , Radiation Tolerance , Recombinational DNA Repair , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mice , Animals , Radiation Tolerance/genetics , RNA, Circular/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Female , Male , Prognosis , Mice, Nude
6.
Sci China Life Sci ; 67(5): 940-957, 2024 May.
Article in English | MEDLINE | ID: mdl-38212458

ABSTRACT

Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.


Subject(s)
Cell Adhesion Molecules , Neoplasms , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cell Adhesion Molecules/metabolism , Molecular Targeted Therapy/methods , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/therapy , Neovascularization, Pathologic/metabolism , Signal Transduction , Tumor Microenvironment
7.
Cell Oncol (Dordr) ; 47(3): 733-757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38170381

ABSTRACT

BACKGROUND: Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION: This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.


Subject(s)
Immunotherapy , Killer Cells, Natural , Neoplasms , Humans , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Animals
8.
Adv Sci (Weinh) ; 11(12): e2306515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229179

ABSTRACT

In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Oral Submucous Fibrosis , Humans , Oral Submucous Fibrosis/genetics , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Transcriptome , Tumor Microenvironment , Cell Transformation, Neoplastic , Gene Expression Profiling
9.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189068, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171406

ABSTRACT

Cancer vaccines, designed to activate the body's own immune system to fight against tumors, are a current trend in cancer treatment and receiving increasing attention. Cancer vaccines mainly include oncolytic virus vaccine, cell vaccine, peptide vaccine and nucleic acid vaccine. Over the course of decades of research, oncolytic virus vaccine T-VEC, cellular vaccine sipuleucel-T, various peptide vaccines, and DNA vaccine against HPV positive cervical cancer have brought encouraging results for cancer therapy, but are losing momentum in development due to their respective shortcomings. In contrast, the advantages of mRNA vaccines such as high safety, ease of production, and unmatched efficacy are on full display. In addition, advances in technology such as pseudouridine modification have cracked down the bottleneck for developing mRNA vaccines including instability, innate immunogenicity, and low efficiency of in vivo delivery. Several cancer mRNA vaccines have achieved promising results in clinical trials, and their usage in conjunction with other immune checkpoint inhibitors (ICIs) has further boosted the efficiency of anti-tumor immune response. We expect a rapid development of mRNA vaccines for cancer immunotherapy in the near future. This review provides a brief overview of the current status of mRNA vaccines, highlights the action mechanism of cancer mRNA vaccines, their recent advances in clinical trials, and prospects for their clinical applications.


Subject(s)
Cancer Vaccines , Oncolytic Viruses , Uterine Cervical Neoplasms , Female , Humans , Cancer Vaccines/genetics , Cancer Vaccines/therapeutic use , mRNA Vaccines , Immunotherapy/methods
10.
Methods ; 222: 100-111, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228196

ABSTRACT

BACKGROUND: Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS: In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS: There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION: This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/diagnosis , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry , Early Detection of Cancer , Metabolomics/methods , Biomarkers , Biomarkers, Tumor
11.
Cell Oncol (Dordr) ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962808

ABSTRACT

PURPOSE: Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS: Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS: In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION: Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.

12.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189006, 2023 11.
Article in English | MEDLINE | ID: mdl-37913942

ABSTRACT

Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.


Subject(s)
Cytoplasmic Granules , Stress, Physiological , Humans , Cytoplasmic Granules/metabolism , Stress Granules , Oxidative Stress , Carcinogenesis/metabolism , Tumor Microenvironment
13.
Front Immunol ; 14: 1274547, 2023.
Article in English | MEDLINE | ID: mdl-38022518

ABSTRACT

The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Tumor-Associated Macrophages/pathology , Immunotherapy , Macrophages , Tumor Microenvironment
14.
Heliyon ; 9(11): e21289, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37885731

ABSTRACT

Background: Occupational exposure is of increasing concern, posing a serious threat to nurses, especially in the event of a public health emergency. Bibliometrics sheds novel light on the current state of research and factors influencing nurses' occupational exposures, illuminating hot topics and trends in the literature. Bibliometrics is essential to analyze the potential harm to nurses in Asia. Methods: Data were extracted from the Web of Science Core Collection on August 6, 2022 with the following search terms: TS= (nurses) AND (TS= (occupational exposure OR occupational health)). CiteSpace and VOSviewer were used to analyze national and institutional collaborations, reference clustering, citations and co-citations of journals and keyword bursts, and HistCite was used to analyze the citation historiography map. To analyze the data and generate statistical charts, Origin and Microsoft Excel were utilized. Results: A total of 1448 studies on nurses' occupational exposure in Asia were identified. China Medical University had the most publications among Asian institutions, and China had the largest share among Asian countries. Most articles on nurses' occupational exposure in Asia were in the Journal of Occupational Health, and the journal with the highest impact factor was the Journal of Nursing Management. The COVID-19 outbreak caused a substantial shift in the direction of studies on nurses' occupational exposure in Asia. Mental health is a current hot topic, while sharps injuries and bodily fluid exposure are long-term priorities for attention. Conclusions: The hotspots of research on nurses' occupational exposure in Asia focus on mental health, burnout, blood exposure, infection, and sharps injury. Due to the COVID-19 pandemic, recent research has concentrated on personalized mental health care and the development of protective equipment, and cross-disciplinary collaboration may be a new trend in the future.

15.
Front Cell Dev Biol ; 11: 1267661, 2023.
Article in English | MEDLINE | ID: mdl-37601114

ABSTRACT

[This corrects the article DOI: 10.3389/fcell.2021.762796.].

16.
Theranostics ; 13(10): 3480-3496, 2023.
Article in English | MEDLINE | ID: mdl-37351173

ABSTRACT

Purpose: Chondrocytes (CHs) in cartilage undergo several detrimental events during the development of osteoarthritis (OA). However, the mechanism underlying CHs regeneration involved in pathogenesis is largely unknown. The aim of this study was to explore the underlying mechanism of regeneration of CHs involved in the pathological condition and the potential therapeutic strategies of cartilage repair. Methods and Materials: CHs were isolated from human cartilage in different OA stages and the high-resolution cellular architecture of human osteoarthritis was examined by applying single-cell RNA sequencing. The analysis of gene differential expression and gene set enrichment was utilized to reveal the relationship of cartilage regeneration and microtubule stabilization. Microtubule destabilizer (nocodazole) and microtubule stabilizer (docetaxel) treated-human primary CHs and rats cartilage defect model were used to investing the effects and downstream signaling pathway of microtubule stabilization on cartilage regeneration. Results: CHs subpopulations were identified on the basis of their gene markers and the data indicated an imbalance caused by an increase in the degeneration and disruption of CHs regeneration in OA samples. Interestingly, the CHs subpopulation namely CHI3L1+ CHs, was characterized by the cell regenerative capacity, stem cell potency and the activated microtubule (MT) process. Furthermore, the data indicated that MT stabilization was effective in promoting cartilage regeneration in rats with cartilage injury model by inhibiting YAP activity. Conclusion: These findings lead to a new understanding of CHs regeneration in the OA pathophysiology context and suggest that MT stabilization is a promising therapeutic target for OA and cartilage injury.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Rats , Animals , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Stem Cells/metabolism , Microtubules/metabolism
17.
Cell Death Differ ; 30(7): 1679-1694, 2023 07.
Article in English | MEDLINE | ID: mdl-37173390

ABSTRACT

Circular RNAs (circRNAs) play an important regulatory role in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), which have not been thoroughly elucidated. In this study, we revealed for the first time that circRILPL1 was upregulated in NPC, weakened adhesion and decreased stiffness of NPC cells, and promoted NPC proliferation and metastasis in vitro and in vivo. Mechanistically, circRILPL1 inhibited the LATS1-YAP kinase cascade by binding to and activating ROCK1, resulting in decrease of YAP phosphorylation. Binding and cooperating with transport receptor IPO7, circRILPL1 promoted the translocation of YAP from the cytoplasm to the nucleus, where YAP enhanced the transcription of cytoskeleton remodeling genes CAPN2 and PXN. By which, circRILPL1 contributed to the pathogenesis of NPC. Our results demonstrated that circRILPL1 promoted the proliferation and metastasis of NPC through activating the Hippo-YAP signaling pathway by binding to both ROCK1 and IPO7. Highly expressed circRILPL1 in NPC may serve as an important biomarker for tumor diagnosis and may also be a potential therapeutic target.


Subject(s)
Nasopharyngeal Neoplasms , RNA, Circular , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , RNA, Circular/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Cell Line, Tumor , Hippo Signaling Pathway , Nasopharyngeal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , rho-Associated Kinases/genetics
19.
Br J Cancer ; 129(2): 204-221, 2023 08.
Article in English | MEDLINE | ID: mdl-37095185

ABSTRACT

Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.


Subject(s)
Neoplasms , RNA Processing, Post-Transcriptional , Humans , RNA, Messenger/metabolism , RNA/genetics , RNA/metabolism , Neoplasms/genetics , Methylation
20.
Sci China Life Sci ; 66(11): 2515-2526, 2023 11.
Article in English | MEDLINE | ID: mdl-37071289

ABSTRACT

Cancer is one of the leading causes of human death worldwide. Treatment of cancer exhausts significant medical resources, and the morbidity and mortality caused by cancer is a huge social burden. Cancer has therefore become a serious economic and social problem shared globally. As an increasingly prevalent disease in China, cancer is a huge challenge for the country's healthcare system. Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016, we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China. And also, we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.


Subject(s)
Neoplasms , Humans , Neoplasms/epidemiology , Neoplasms/prevention & control , Incidence , Risk Factors , Survival Rate , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...