Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(13): eade5321, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989359

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary brain cancer. Despite multimodal treatment including surgery, radiotherapy, and chemotherapy, median patient survival has remained at ~15 months for decades. This situation demands an outside-the-box treatment approach. Using magnetic carbon nanotubes (mCNTs) and precision magnetic field control, we report a mechanical approach to treat chemoresistant GBM. We show that GBM cells internalize mCNTs, the mobilization of which by rotating magnetic field results in cell death. Spatiotemporally controlled mobilization of intratumorally delivered mCNTs suppresses GBM growth in vivo. Functionalization of mCNTs with anti-CD44 antibody, which recognizes GBM cell surface-enriched antigen CD44, increases mCNT recognition of cancer cells, prolongs mCNT enrichment within the tumor, and enhances therapeutic efficacy. Using mouse models of GBM with upfront or therapy-induced resistance to temozolomide, we show that mCNT treatment is effective in treating chemoresistant GBM. Together, we establish mCNT-based mechanical nanosurgery as a treatment option for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanotubes, Carbon , Mice , Animals , Glioblastoma/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Brain Neoplasms/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Death , Cell Line, Tumor
2.
Neuron ; 111(1): 30-48.e14, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36323321

ABSTRACT

Major obstacles in brain cancer treatment include the blood-tumor barrier (BTB), which limits the access of most therapeutic agents, and quiescent tumor cells, which resist conventional chemotherapy. Here, we show that Sox2+ tumor cells project cellular processes to ensheathe capillaries in mouse medulloblastoma (MB), a process that depends on the mechanosensitive ion channel Piezo2. MB develops a tissue stiffness gradient as a function of distance to capillaries. Sox2+ tumor cells perceive substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion to promote cellular process growth and cell surface sequestration of ß-catenin. Piezo2 knockout reverses WNT/ß-catenin signaling states between Sox2+ tumor cells and endothelial cells, compromises the BTB, reduces the quiescence of Sox2+ tumor cells, and markedly enhances the MB response to chemotherapy. Our study reveals that mechanosensitive tumor cells construct the BTB to mask tumor chemosensitivity. Targeting Piezo2 addresses the BTB and tumor quiescence properties that underlie treatment failures in brain cancer.


Subject(s)
Brain Neoplasms , beta Catenin , Mice , Animals , beta Catenin/metabolism , beta Catenin/therapeutic use , Endothelial Cells/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain/metabolism , Ion Channels/metabolism , Blood-Brain Barrier/metabolism
3.
Rev Physiol Biochem Pharmacol ; 183: 103-133, 2022.
Article in English | MEDLINE | ID: mdl-32894333

ABSTRACT

Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.


Subject(s)
Neoplasms , Biophysics , Carcinogenesis , Humans , Ion Channels , Neoplasms/pathology , Signal Transduction , Tumor Microenvironment
4.
J Exp Med ; 217(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32097463

ABSTRACT

Ion channels represent a large class of drug targets, but their role in brain cancer is underexplored. Here, we identify that chloride intracellular channel 1 (CLIC1) is overexpressed in human central nervous system malignancies, including medulloblastoma, a common pediatric brain cancer. While global knockout does not overtly affect mouse development, genetic deletion of CLIC1 suppresses medulloblastoma growth in xenograft and genetically engineered mouse models. Mechanistically, CLIC1 enriches to the plasma membrane during mitosis and cooperates with potassium channel EAG2 at lipid rafts to regulate cell volume homeostasis. CLIC1 deficiency is associated with elevation of cell/nuclear volume ratio, uncoupling between RNA biosynthesis and cell size increase, and activation of the p38 MAPK pathway that suppresses proliferation. Concurrent knockdown of CLIC1/EAG2 and their evolutionarily conserved channels synergistically suppressed the growth of human medulloblastoma cells and Drosophila melanogaster brain tumors, respectively. These findings establish CLIC1 as a molecular dependency in rapidly dividing medulloblastoma cells, provide insights into the mechanism by which CLIC1 regulates tumorigenesis, and reveal that targeting CLIC1 and its functionally cooperative potassium channel is a disease-intervention strategy.


Subject(s)
Chloride Channels/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Medulloblastoma/metabolism , Medulloblastoma/pathology , Animals , Body Weight , Cell Line, Tumor , Cell Proliferation , Cell Size , Chloride Channels/deficiency , Chloride Channels/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Knockdown Techniques , Homeostasis , Mice , Mitosis , Mutation/genetics , Potassium Channels, Sodium-Activated/metabolism , Protein Binding , RNA/biosynthesis , Survival Analysis , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Neuron ; 100(4): 799-815.e7, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30344046

ABSTRACT

Alteration of tissue mechanical properties is a physical hallmark of solid tumors including gliomas. How tumor cells sense and regulate tissue mechanics is largely unknown. Here, we show that mechanosensitive ion channel Piezo regulates mitosis and tissue stiffness of Drosophila gliomas, but not non-transformed brains. PIEZO1 is overexpressed in aggressive human gliomas and its expression inversely correlates with patient survival. Deleting PIEZO1 suppresses the growth of glioblastoma stem cells, inhibits tumor development, and prolongs mouse survival. Focal mechanical force activates prominent PIEZO1-dependent currents from glioma cell processes, but not soma. PIEZO1 localizes at focal adhesions to activate integrin-FAK signaling, regulate extracellular matrix, and reinforce tissue stiffening. In turn, a stiffer mechanical microenvironment elevates PIEZO1 expression to promote glioma aggression. Therefore, glioma cells are mechanosensory in a PIEZO1-dependent manner, and targeting PIEZO1 represents a strategy to break the reciprocal, disease-aggravating feedforward circuit between tumor cell mechanotransduction and the aberrant tissue mechanics. VIDEO ABSTRACT.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Ion Channels/biosynthesis , Mechanotransduction, Cellular/physiology , Adult , Aged , Animals , Animals, Genetically Modified , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Drosophila melanogaster , Female , Glioma/genetics , Glioma/pathology , Humans , Ion Channels/genetics , Male , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Tumor Microenvironment/physiology , Xenograft Model Antitumor Assays/methods
6.
Nature ; 553(7687): 222-227, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323298

ABSTRACT

Chromosomal translocations that generate in-frame oncogenic gene fusions are notable examples of the success of targeted cancer therapies. We have previously described gene fusions of FGFR3-TACC3 (F3-T3) in 3% of human glioblastoma cases. Subsequent studies have reported similar frequencies of F3-T3 in many other cancers, indicating that F3-T3 is a commonly occuring fusion across all tumour types. F3-T3 fusions are potent oncogenes that confer sensitivity to FGFR inhibitors, but the downstream oncogenic signalling pathways remain unknown. Here we show that human tumours with F3-T3 fusions cluster within transcriptional subgroups that are characterized by the activation of mitochondrial functions. F3-T3 activates oxidative phosphorylation and mitochondrial biogenesis and induces sensitivity to inhibitors of oxidative metabolism. Phosphorylation of the phosphopeptide PIN4 is an intermediate step in the signalling pathway of the activation of mitochondrial metabolism. The F3-T3-PIN4 axis triggers the biogenesis of peroxisomes and the synthesis of new proteins. The anabolic response converges on the PGC1α coactivator through the production of intracellular reactive oxygen species, which enables mitochondrial respiration and tumour growth. These data illustrate the oncogenic circuit engaged by F3-T3 and show that F3-T3-positive tumours rely on mitochondrial respiration, highlighting this pathway as a therapeutic opportunity for the treatment of tumours with F3-T3 fusions. We also provide insights into the genetic alterations that initiate the chain of metabolic responses that drive mitochondrial metabolism in cancer.


Subject(s)
Cell Respiration , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Oncogene Proteins, Fusion/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Cell Respiration/drug effects , Cell Transformation, Neoplastic/drug effects , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mitochondria/drug effects , Mitochondria/genetics , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Organelle Biogenesis , Oxidative Phosphorylation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Phosphorylation , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Transcription, Genetic , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...