Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Microb Pathog ; : 106865, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153578

ABSTRACT

Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX) is a unique exotoxin produced by Mycoplasma pneumoniae (MP) and has been confirmed to possess ADP-ribosyltransferase (ART) and vacuolating activities. CARDS TX binds to receptors on the surfaces of mammalian cells followed by entry into the cells through clathrin-mediated endocytosis, and exerts cytotoxic effects by undergoing retrograde transport and finally cleavage on endosomes and cellular organelles. In addition, CARDS TX can trigger severe inflammatory reactions resulting in airway dysfunction, producing allergic inflammation and asthma-like conditions. As a newly discovered virulence factor of MP, CARDS TX has been extensively studied in recent years. As resistance to macrolide drugs has increased significantly in recent years and there is no vaccine against MP, the development of a vaccine targeting CARDS TX is considered a potential preventive measure. This review focuses on recent studies and insights into this toxin, providing directions for a better understanding of MP pathogenesis and treatment. IMPORTANCE: A serious hazard to worldwide public health in recent years, Mycoplasma pneumoniae (MP) is a prominent bacterium that causes community-acquired pneumonia (CAP) in hospitalized children. Due to their high prevalence and fatality rates, MP infections often cause both respiratory illnesses and extensive extrapulmonary symptoms. It has recently been shown that MP produces a distinct exotoxin known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). Mycoplasma pneumoniae pneumonia (MPP)-like tissue injury is caused by this toxin because it has both ADP-ribosyltransferase and vacuolating properties. A better knowledge of MP etiology and therapy is provided by this review, which focuses on latest research and insights into this toxin.

2.
J Nanobiotechnology ; 22(1): 498, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164657

ABSTRACT

Microcarrier is a promising drug delivery system demonstrating significant value in treating cancers. One of the main goals is to devise microcarriers with ingenious structures and functions to achieve better therapeutic efficacy in tumors. Here, inspired by the nucleus-cytoplasm structure of cells and the material exchange reaction between them, we develop a type of biorthogonal compartmental microparticles (BCMs) from microfluidics that can separately load and sequentially release cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) for tumor therapy. The Tz-ICG works not only as an activator for TCO-DOX but also as a photothermal agent, allowing for the combination of bioorthogonal chemotherapy and photothermal therapy (PTT). Besides, the modification of DOX with cyclooctene significantly decreases the systemic toxicity of DOX. As a result, the developed BCMs demonstrate efficient in vitro tumor cell eradication and exhibit notable tumor growth inhibition with favorable safety. These findings illustrate that the formulated BCMs establish a platform for bioorthogonal prodrug activation and localized delivery, holding significant potential for cancer therapy and related applications.


Subject(s)
Doxorubicin , Drug Delivery Systems , Indocyanine Green , Photothermal Therapy , Prodrugs , Doxorubicin/pharmacology , Doxorubicin/chemistry , Photothermal Therapy/methods , Humans , Prodrugs/pharmacology , Prodrugs/chemistry , Animals , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Mice , Drug Delivery Systems/methods , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/drug therapy , Cyclooctanes/chemistry , Cyclooctanes/pharmacology , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female
3.
Small ; : e2404285, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39073246

ABSTRACT

The solar-driven overall water splitting (2H2O→2H2 + O2) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O2, such as hydrogen peroxide (H2O2, 2H2O→H2 + H2O2). Compared with overall water splitting, this approach is more kinetically feasible and generates more high-value products of H2 and H2O2. In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H2O2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.

4.
Nanomicro Lett ; 16(1): 232, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954118

ABSTRACT

Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management. The microsphere comprised a photothermal-responsive inverse opal framework, which was constructed by hyaluronic acid methacryloyl, silk fibroin methacryloyl and black phosphorus quantum dots (BPQDs), and was further re-filled with a dynamic hydrogel. The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be applied arbitrarily, and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel. Additionally, eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism. Moreover, effective monitoring of the drug release process can be achieved through visual color variations. The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management. These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.

5.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930932

ABSTRACT

Fe/Cu bimetallic catalysts have a synergistic effect that can effectively enhance catalytic activity, so Fe/Cu bimetallic catalysts have been extensively studied. However, the efficacy and mechanisms of Fe/Cu bimetallic catalysts' peroxidation activation have rarely been explored. In this study, Fe/Cu bimetallic materials were fabricated to catalyze different oxidizing agents, including peroxymonosulfate (PMS), peroxydisulfate (PDS), peroxyacetic acid (PAA), and hydrogen peroxide (H2O2), for the degradation of sulfamethoxazole (SMX). The Fe/Cu/oxidant systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). In the Fe/Cu/PMS, Fe/Cu/PDS, and Fe/Cu/PAA systems, the main reactive oxygen species (ROS) responsible for SMX degradation were hydroxyl radical (•OH) and singlet oxygen (1O2), while the main ROS was only •OH in the H2O2 system. The differences in the surface structure of the materials before and after oxidation were examined, revealing the presence of a large amount of flocculent material on the surface of the oxidized PMS material. Anion experiments and actual body experiments also revealed that the PMS system had a strong anti-interference ability. Finally, a comprehensive comparison concluded that the PMS system was the optimal system among the four oxidation systems. Overall, this work revealed that the PMS oxidant has a better catalytic degradation of SMX compared to other oxidizers for Fe/Cu, that PMS generates more ROS, and that the PMS system has a stronger resistance to interference.

6.
PLoS One ; 19(5): e0303988, 2024.
Article in English | MEDLINE | ID: mdl-38781255

ABSTRACT

The aim of this systematic review was to describe the efficacy and acceptability of natural products in the management of oral mucositis caused by radiation. From the day it started to August 7, 2023, a thorough search for randomized controlled trials (RCTs) was carried out among seven databases: the Web of Science, PubMed, Embase, OVID, Scopus, the Cochrane Library and the CINAHL database. Only English-language articles were identified during the search. Using the revised Cochrane risk-of-bias tool, version 2, two researchers screened the articles, collected information on study characteristics, and appraised risks of bias. The data were analyzed and descriptively presented with a narrative synthesis methodology involving the Synthesis Without Meta-Analysis (SWiM) reporting element applied in detail. The PROSPERO registration number of this study is CRD42023476932. Thirty-six clinical trials were included in the study; the included studies included a variety of 20 types of natural products. Honey and Curcuma longa were the most commonly assessed natural products. A total of 2,400 participants reported taking part in therapy with natural products for oral mucositis. Natural products demonstrated substantial efficacy in terms of influencing intensity, incidence, pain score, quality of life, and symptoms such as xerostomia and dysphagia. Except for manuka honey, most natural products were well accepted. Regarding the clinical trials' risk of bias, 2 clinical trials (5.56%) had a high risk of bias, 17 studies (47.2%) had a low risk of bias, and 17 studies (47.2%) were rated with "some concern." Natural remedies work well as alternate treatments for managing oral mucositis caused by radiation therapy. However, additional clinical trials are still needed. The safety of these conventional medications as well as their effectiveness and safety when used in combination with other conventional or naturopathic therapies should be fully examined.


Subject(s)
Biological Products , Radiotherapy , Stomatitis , Humans , Stomatitis/etiology , Stomatitis/drug therapy , Stomatitis/prevention & control , Biological Products/therapeutic use , Radiotherapy/adverse effects , Radiation Injuries/drug therapy , Radiation Injuries/prevention & control , Radiation Injuries/etiology , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
7.
Front Microbiol ; 15: 1367658, 2024.
Article in English | MEDLINE | ID: mdl-38737410

ABSTRACT

Introduction: Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods: In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion: Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.

8.
Front Psychol ; 15: 1295915, 2024.
Article in English | MEDLINE | ID: mdl-38699570

ABSTRACT

Current research has increasingly focused on the preventive role of individual legal socialization in crime. The socialization of legal emotions is an important part of legal socialization. Building upon existing literature, this study, conducted through two sub-studies, investigated the influencing factors of legal emotions in N mainland Chinese university students and the mechanisms through which legal emotions impact aggressive behavior. In study 1, the results indicated that mother-child attachment, innovation spirit, and positive emotional expression positively predicted positive legal emotion, while mother-child attachment, dependency dimension in adult attachment, and positive emotional expression negatively predicted negative legal emotions. The anxiety dimension in adult attachment and negative emotional expression positively predicted negative legal emotions. In study 2, Positive legal emotion among university students could directly negatively predict aggressive behavior or exert influence through social alienation. Negative legal emotions could not only directly positively predict aggressive behavior but also partly affect it through social alienation. In summary, our study not only identified factors that influence legal emotions, but also found that legal emotions have an impact on aggressive behavior directly or indirectly through social alienation. Our research findings have significant implications for cultivating positive legal emotion in university students and curbing aggressive behavior. This can be achieved by promoting the legal socialization of university students and ultimately contributing to crime prevention.

9.
Bioresour Technol ; 402: 130829, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734261

ABSTRACT

Most marine microalgae are typically cultivated in coastal areas due to challenges in inland cultivation. In this 185 days experiment, Nannochloropsis oceanica was semi-continuously cultivated inland using different photobioreactors (PBRs). The newly designed 700-liter (L) PBR exhibited tolerance to seasonal changes compared to the 150-L PBRs. The innovative in-situ oxygen release rate (ORR) measurement method results indicated that ORR was influenced by light intensity and temperature. The optimal temperature range for N. oceanica growth was 14-25 â„ƒ, demonstrated cold tolerance and lipid accumulation at low temperatures. The maximum lipid content in 700-L and 150-L PBRs was 29 % and 28 %, respectively. Based on the average biomass productivity, the price of N. oceanica was $11.89 kg-1 (or $3.35 kg-1 based on maximum biomass productivity), which is cheaper than the current market price of $20.19 kg-1. From results, smaller PBRs at the same hydro electricity price are more cost-effective.


Subject(s)
Biomass , Microalgae , Photobioreactors , Stramenopiles , Microalgae/growth & development , Microalgae/metabolism , Stramenopiles/growth & development , Stramenopiles/metabolism , Temperature , Oxygen , Light
10.
Article in English | MEDLINE | ID: mdl-38594624

ABSTRACT

Hydrogel microcarrier-based drug delivery systems are of great value in the combination therapy of tumors. Current research directions concentrate on the development of more economic, convenient, and effective combined therapeutic platforms. Herein, we developed novel adhesive composite microparticles (MPPMD) with combined chemo- and photothermal therapy ability via microfluidic electrospray technology for local hepatocellular carcinoma treatment. These composite microparticles consisted of doxorubicin (DOX)-loaded and polydopamine-wrapped mesoporous silicon and alginate. Benefiting from such a strategy of hierarchical structure drug loading, DOX could be gradually released from the system, effectively avoiding the direct toxicity of chemotherapeutics to the body. Additionally, the designed microparticles could not only effectively treat tumors by releasing the chemotherapy drug DOX but also show excellent photothermal properties under the irradiation of near-infrared light, achieving combined chemo- and photothermal treatment effects. Based on these advantages, the MPPMD could remarkably eliminate tumor cells in vitro and enormously restrict tumor development in vivo. These results illustrate that such composite microparticles are ideal combination treatment platforms, possessing promising expectations for cancer therapy.

11.
Int J Biol Macromol ; 268(Pt 1): 131732, 2024 May.
Article in English | MEDLINE | ID: mdl-38649078

ABSTRACT

Drug delivery systems based on hydrogel microcarriers have shown enormous achievements in tumor treatment. Current research direction mainly concentrated on the improvement of the structure and function of the microcarriers to effectively deliver drugs for enhanced cancer treatment with decreased general toxicity. Herein, we put forward novel hierarchical mesoporous silicon nanoparticles (MSNs) and bovine serum albumin (BSA) composite microparticles (MPMSNs@DOX/FU) delivering doxorubicin (DOX) and 5-fluorouracil (FU) for effective tumor therapy with good safety. The DOX and FU could be efficiently loaded in the MSNs, which were further encapsulated into methacrylate BSA (BSAMA) microparticles by applying a microfluidic technique. When transported to the tumor area, DOX and FU will be persistently released from the MPMSNs@DOX/FU and kept locally to lessen general toxicity. Based on these advantages, MPMSNs@DOX/FU could observably kill liver cancer cells in vitro, and evidently suppress the tumor development of liver cancer nude mice model in vivo. These results suggest that such hierarchical hydrogel microparticles are perfect candidates for liver cancer treatment, holding promising expectations for impactful cancer therapy.


Subject(s)
Doxorubicin , Drug Carriers , Fluorouracil , Liver Neoplasms , Serum Albumin, Bovine , Silicon , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Fluorouracil/pharmacology , Fluorouracil/chemistry , Fluorouracil/administration & dosage , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Silicon/chemistry , Humans , Mice , Serum Albumin, Bovine/chemistry , Porosity , Drug Carriers/chemistry , Xenograft Model Antitumor Assays , Drug Delivery Systems , Mice, Nude , Nanoparticles/chemistry , Drug Liberation , Cell Line, Tumor , Microspheres , Hep G2 Cells
12.
Cell Signal ; 118: 111148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521179

ABSTRACT

Hepatocellular carcinoma (HCC) is the major form of liver malignancy with high incidence and mortality. Identifying novel biomarkers and understanding regulatory mechanisms underlying the development and progression of HCC are critical for improving diagnosis, treatment and patient outcomes. Carboxyl terminus of Hsc-70-interacting protein (CHIP) is a well-described U-box-type E3 ubiquitin ligase which promotes the ubiquitination and degradation of numerous tumor-associated proteins. Recent studies have shown that CHIP can play as a tumor-suppressor gene or an oncogene in different kinds of malignancies. To date, the function and mechanism of CHIP in hepatocellular carcinoma remains largely unknown. Based on TCGA data, we found that compared with high CHIP expression, the overall survival of HCC patients with low expression of CHIP was better. In addition, CHIP overexpression markedly enhanced HCC cell proliferation and colony formation. Conversely, knockdown of CHIP restrained the proliferation and colony formation of HCC cells. Meanwhile, knockdown of CHIP decreased mitochondrial cristae or ruptured outer mitochondrial membrane, promoted the accumulation of Fe2+ and ferroptosis of HCC cells. Further research for the first time confirmed that CHIP interacts and degrades transferrin receptor 1 (TfR1) by ubiquitin-proteasome pathway, which leads to the inhibition of ferroptosis and promotes the proliferation of HCC cells. The analysis of proteomics data from CPTAC revealed a negative correlation between CHIP and TfR1 protein expression levels in HCC. These findings indicate that CHIP acts as a negative modulator of ferroptosis and functions as an oncogene in HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/pathology , Receptors, Transferrin , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Nat Commun ; 15(1): 2179, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467684

ABSTRACT

Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.


Subject(s)
Ecosystem , Metagenome , Silicates , Metagenome/genetics , Metagenomics/methods
14.
Acta Pharmacol Sin ; 45(7): 1477-1491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38538716

ABSTRACT

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Diabetes Mellitus, Experimental , Signal Transduction , Wound Healing , rho-Associated Kinases , Animals , rho-Associated Kinases/metabolism , rho-Associated Kinases/antagonists & inhibitors , Wound Healing/drug effects , Humans , Diabetes Mellitus, Experimental/metabolism , Male , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Human Umbilical Vein Endothelial Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Female
15.
Biochem Pharmacol ; 223: 116140, 2024 May.
Article in English | MEDLINE | ID: mdl-38513740

ABSTRACT

Cancer cells consume more glucose and usually overexpress glucose transporters which have become potential targets for the development of anticancer drugs. It has been demonstrated that selective SGLT2 inhibitors, such as canagliflozin and dapagliflozin, display anticancer activity. Here we demonstrated that canagliflozin and dapagliflozin synergistically enhanced the growth inhibitory effect of paclitaxel in cancer cells including ovarian cancer and oral squamous cell carcinoma cells. Canagliflozin also inhibited glucose uptake via GLUTs. The combination of paclitaxel and WZB117, a GLUT inhibitor, exhibited a strong synergy, supporting the notion that inhibition of GLUTs by canagliflozin may also account for the synergy between canagliflozin and paclitaxel. Mechanistic studies in ES-2 ovarian cancer cells revealed that canagliflozin potentiated paclitaxel-induced apoptosis and DNA damaging effect. Paclitaxel in the nanomolar range elevated abnormal mitotic cells as well as aneuploid cells, and canagliflozin further enhanced this effect. Furthermore, canagliflozin downregulated cyclin B1 and phospho-BUBR1 upon spindle assembly checkpoint (SAC) activation by paclitaxel, and may consequently impair SAC. Thus, paclitaxel disturbed microtubule dynamics and canagliflozin compromised SAC activity, together they may induce premature mitotic exit, accumulation of aneuploid cells with DNA damage, and ultimately apoptosis.


Subject(s)
Benzhydryl Compounds , Carcinoma, Squamous Cell , Glucosides , Mouth Neoplasms , Ovarian Neoplasms , Female , Humans , Paclitaxel/pharmacology , Canagliflozin/pharmacology , Mitosis , Apoptosis , Ovarian Neoplasms/genetics , Glucose/pharmacology , Aneuploidy
16.
Environ Res ; 251(Pt 2): 118644, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38485074

ABSTRACT

Tetracycline hydrochloride (TC) accumulates in large quantities in the water environment, causing a serious threat to human health and ecological environment safety. This research focused on developing cost-effective catalysts with high 2e- selectivity for electro-Fenton (EF) technology, a green pollution treatment method. Defective nitrogen-doped porous carbon (d-NPC) was prepared using the metal-organic framework as the precursor to achieve in-situ H2O2 production and self-decomposition into high activity ·OH for degradation of TC combined with Co2+/Co3+. The d-NPC produced 172.1 mg L-1 H2O2 within 120 min, and could degrade 96.4% of TC in EF system. The self-doped defects and graphite-nitrogen in d-NPC improved the oxygen reduction performance and increased the H2O2 yield, while pyridine nitrogen could catalyze H2O2 to generate ·OH. The possible pathway of TC degradation was also proposed. In this study, defective carbon materials were prepared by ball milling, which provided a new strategy for efficient in-situ H2O2 production and the degradation of pollutants.


Subject(s)
Carbon , Hydrogen Peroxide , Nitrogen , Tetracycline , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Nitrogen/chemistry , Carbon/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Iron/chemistry
17.
PNAS Nexus ; 3(2): pgae057, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380056

ABSTRACT

Land-ocean interactions greatly impact the evolution of coastal life on earth. However, the ancient geological forces and genetic mechanisms that shaped evolutionary adaptations and allowed microorganisms to inhabit coastal brackish waters remain largely unexplored. In this study, we infer the evolutionary trajectory of the ubiquitous heterotrophic archaea Poseidoniales (Marine Group II archaea) presently occurring across global aquatic habitats. Our results show that their brackish subgroups had a single origination, dated to over 600 million years ago, through the inversion of the magnesium transport gene corA that conferred osmotic-stress tolerance. The subsequent loss and gain of corA were followed by genome-wide adjustment, characterized by a general two-step mode of selection in microbial speciation. The coastal family of Poseidoniales showed a rapid increase in the evolutionary rate during and in the aftermath of the Cryogenian Snowball Earth (∼700 million years ago), possibly in response to the enhanced phosphorus supply and the rise of algae. Our study highlights the close interplay between genetic changes and ecosystem evolution that boosted microbial diversification in the Neoproterozoic continental margins, where the Cambrian explosion of animals soon followed.

18.
Curr Med Chem ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38299292

ABSTRACT

Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.

19.
J Environ Manage ; 354: 120331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368808

ABSTRACT

Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Drinking Water , Humans , Wastewater , Computer Simulation , Risk Assessment , Water Microbiology
20.
Environ Res ; 249: 118362, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38325787

ABSTRACT

Sulfate radical-based advanced oxidation processes with (SR-AOPs) are widely employed to degrade organic pollutants due to their high efficiency, cost-effectiveness and safety. In this study, a highly active and stable FeNiP was successfully prepared by reduction and heat treatment. FeNiP exhibited high performance of peroxymonosulfate (PMS) activation for tetracycline hydrochloride (TC) removal. Over a wide pH range, an impressive TC degaradation efficiency 97.86% was achieved within 60 min employing 0.1 g/L FeNiP and 0.2 g/L PMS at room temperature. Both free radicals of SO4·-, ·OH, ·O2- and non-free radicals of 1O2 participated the TC degradation in the FeNiP/PMS system. The PMS activation ability was greatly enhanced by the cycling between Ni and Fe bimetal, and the active site regeneration was achieved due to the existence of the negatively charged Pn-. Moreover, the FeNiP/PMS system exhibited substantial TC degradation levels in both simulated real-world disturbance scenarios and practical water tests. Cycling experiments further affirmed the robust stability of FeNiP catalyst, demonstrating sustained degradation efficiency of approximately 80% even after four cycles. These findings illuminate its promising potential across natural water bodies, presenting an innovative catalyst construction approach for PMS activation in the degradation of antibiotic pollutants.


Subject(s)
Iron , Peroxides , Tetracycline , Water Pollutants, Chemical , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Iron/chemistry , Nickel/chemistry , Anti-Bacterial Agents/chemistry , Oxidation-Reduction , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL