Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 206: 116765, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068711

ABSTRACT

Nonylphenol (NP), a main byproduct of nonylphenol polyethoxylates (NPEs) degradation, is prevalent across diverse environmental settings. Given its widespread presence, evaluating the ecological risks associated with NP in coastal waters and sediments is essential for the protection of the marine environment. This study evaluates the acute toxicity of NP on ten representative aquatic species from the Bohai Sea, determining the Aquatic Life Criteria (ALC) through two distinct methods. The Criteria Maximum Concentration (CMC) for NP in seawater was established at 12.0 µg/L, with a Predicted No-Effect Concentration (PNEC) for water at 15.2 µg/L and for sediment at 33.3 µg/kg. Additionally, a tiered ecological risk assessment (ERA) of both surface seawater and sediment in the Bohai Sea revealed significant ecological risks at various sediment sites. These results offer crucial insights for assessing the ecological risks to coastal ecosystem and provide foundational data necessary for informed environmental protection and management strategies.


Subject(s)
Environmental Monitoring , Phenols , Seawater , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Phenols/toxicity , Risk Assessment , China , Seawater/chemistry , Animals , Geologic Sediments/chemistry , Aquatic Organisms/drug effects , Ecosystem , Toxicity Tests, Acute
2.
Bioresour Technol ; 398: 130530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447619

ABSTRACT

Bio-photoelectrochemical cell (BPEC) is an emerging technology that can convert the solar energy into electricity or chemicals. However, traditional BPEC depending on abiotic electrodes is challenging for microbial/enzymatic catalysis because of the inefficient electron exchange. Here, electroactive bacteria (Shewanella loihica PV-4) were used to reduce graphene oxide (rGO) nanosheets and produce co-assembled rGO/Shewanella biohydrogel as a basic electrode. By adsorbing chlorophyll contained thylakoid membrane, this biohydrogel was fabricated as a photoanode that delivered maximum photocurrent 126 µA/cm3 under visible light. Impressively, the biohydrogel could be served as a cathode in BPEC by forming coculture system with genetically edited Clostridium ljungdahlii. Under illumination, the BPEC with above photoanode and cathode yielded âˆ¼ 5.4 mM butyrate from CO2 reduction, 169 % increase compared to dark process. This work provided a new strategy (nanotechnology combined with synthetic biology) to achieve efficient bioelectricity and valuable chemical production in PBEC.


Subject(s)
Bioelectric Energy Sources , Carbon Dioxide , Graphite , Carbon Dioxide/metabolism , Butyrates , Hydrogels , Electricity , Light , Electrodes
3.
J Med Microbiol ; 73(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38506717

ABSTRACT

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Retrospective Studies , High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis/genetics , Brain
4.
Microbiol Spectr ; 12(1): e0224623, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38047697

ABSTRACT

IMPORTANCE: Tuberculous meningitis is a life-threatening infection with high mortality and disability rates. Current diagnostic methods using cerebrospinal fluid (CSF) samples have limited sensitivity and lack predictive biomarkers for evaluating prognosis. This study's findings reveal excessive activation of the immune response during tuberculous meningitis (TBM) infection. Notably, a strong negative correlation was observed between CSF levels of monokine induced by interferon-γ (MIG) and the CSF/blood glucose ratio in TBM patients. MIG also exhibited the highest area under the curve with high sensitivity and specificity. This study suggests that MIG may serve as a novel biomarker for differentiating TBM infection in CSF or serum, potentially leading to improved diagnostic accuracy and better patient outcomes.


Subject(s)
Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , ROC Curve , Interferon-gamma , Serum , Biomarkers , Cerebrospinal Fluid
5.
Adv Mater ; 35(52): e2307141, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37929924

ABSTRACT

Stent implantation is a commonly used palliative treatment for alleviating stenosis in advanced esophageal cancer. However, tissue proliferation induced by stent implantation and continuous tumor growth can easily lead to restenosis. Therefore, functional stents are required to relieve stenosis while inhibiting tissue proliferation and tumor growth, thereby extending the patency. Currently, no ideal functional stents are available. Here, iodine-125 (125 I) nuclides are encapsulated into a nickel-titanium alloy (NiTi) tube to develop a novel temperature-memory spiral radionuclide stent (TSRS). It has the characteristics of temperature-memory, no cold regions at the end of the stent, and a uniform spatial dose distribution. Cell-viability experiments reveal that the TSRS can reduce the proliferation of fibroblasts and tumor cells. TSRS implantation is feasible and safe, has no significant systemic radiotoxicity, and can inhibit in-stent and edge stenosis caused by stent-induced tissue proliferation in healthy rabbits. Moreover, TSRS can improve malignant stenosis and luminal patency resulting from continuous tumor growth in a VX2 esophageal cancer model. As a functional stent, the TSRS combines the excellent properties of NiTi with brachytherapy of the 125 I nuclide and will make significant contributions to the treatment of malignant esophageal stenosis.


Subject(s)
Esophageal Neoplasms , Stents , Animals , Rabbits , Constriction, Pathologic , Temperature , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Radioisotopes
6.
Sci Rep ; 12(1): 8346, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585161

ABSTRACT

In present work, the abrasive-free jet polishing (AFJP) of bulk single-crystal KDP was first fulfilled, when using a newly-designed low-viscosity microemulsion as the AFJP fluid. The novel AFJP fluid shows a typical water-in-oil structure, in which the water cores uniformly distribute in the BmimPF6 IL, with a particle size of about 20-25 nm. What's more, the AFJP fluid is a controllable and selective non-abrasive jet fluid that the shape of the removal function is regular and smooth, presenting a similar Gaussian function, meanwhile, the dispersion coefficient of the removal rate is only 1.9%. Finally, the surface quality of the bulk single-crystal KDP is further improved by AFJP, meanwhile, the subsurface damage is first obviously mitigated.

SELECTION OF CITATIONS
SEARCH DETAIL