Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1030929, 2022.
Article in English | MEDLINE | ID: mdl-36507377

ABSTRACT

Annual evapotranspiration (AET), the total water vapor loss to the atmosphere during a year, is a vital process of global water cycles and energy cycles. Revealing the differences in AET values and spatial variations between forests and grasslands would benefit for understanding AET spatial variations, which serves as a basis for regional water management. Based on published eddy covariance measurements in China, we collected AET values from 29 forests and 46 grasslands, and analyzed the differences in AET values and spatial variations between forests and grasslands in China. The results showed that forests had a significant higher AET (645.98 ± 232.73 kgH2O m-2 yr-1) than grasslands (359.31 ± 156.02 kgH2O m-2 yr-1), while the difference in AET values between forests and grasslands was not significant after controlling mean annual precipitation (MAP) relating factors. The effects of latitude and mean annual air temperature (MAT) on AET spatial variations differed between forests and grassland, while AET of forests and grasslands both exhibited increasing trends with similar rates along the increasing MAP, aridity index (AI), soil water content (SW), and leaf area index. The comprehensive effects of multiple factors on AET spatial variations differed between forests and grasslands, while MAP both played a dominating role. The effects of other factors were achieved through their close correlations with MAP. Therefore, forests and grasslands under similar climate had comparable AET values. AET responses to MAP were comparable between ecosystem types. Our findings provided a data basis for understanding AET spatial variation over terrestrial ecosystems of China or globally.

2.
Sci Rep ; 12(1): 20556, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36446935

ABSTRACT

Net ecosystem productivity (NEP), the difference between gross primary productivity (GPP) and ecosystem respiration (ER), is the basis of forest carbon sinks. Revealing NEP differences between naturally regenerating forests (NF) and planted forests (PF) can benefit for making carbon neutrality strategies. Based on 35 eddy covariance measurements in China, we analyzed NEP differences in values and spatial patterns between NF and PF. The results showed that NF had slightly lower NEP than PF, resulting from the high stand age (SA) and soil fertilizer, while their differences were not significant (p > 0.05). The increasing latitude decreased mean annual air temperature thus decreased GPP both in NF and PF. However, the higher SA and soil fertilizer in NF made most GPP release as ER thus induced no significant NEP spatial variation, while lower SA and soil fertilizer in PF made NEP spatially couple with GPP thus showed a decreasing latitudinal pattern. Therefore, stand characteristics determined the differences in NEP values but indirectly affected the differences in NEP spatial variations through altering GPP allocation. The decreasing latitudinal pattern of NEP in PF indicates a higher sequestration capacity in the PF of South China. Our results provide a basis for improving the forest carbon sequestration.


Subject(s)
Ecosystem , Fertilizers , Forests , China , Soil
3.
Sci Total Environ ; 833: 155242, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35427624

ABSTRACT

Annual gross primary productivity (AGPP) serves as the basis for forming biomass and carbon sinks. Analysing the effects of ecosystem types on AGPP spatial variations would be beneficial for clarifying the spatial variability in AGPP, which would serve ecological management practices such as ensuring regional food security. Based on published eddy covariance measurements in China, we collected AGPP data from 128 ecosystems and analysed the effects of ecosystem types on the spatial variations in AGPP to reveal the AGPP spatial variability and its influencing factors over terrestrial ecosystems of China. The results showed that AGPP significantly differed among ecosystem types and vegetation regions, with the lowest AGPP appearing in grasslands, while different ecosystem types had comparable AGPP within the same vegetation region. The AGPP of all ecosystem types showed a decreasing latitudinal trend but slight longitudinal and altitudinal trends. Mean annual air temperature (MAT) and mean annual precipitation (MAP) were found to affect the spatial variations in AGPP over most ecosystem types, while other factors played little role. The mean annual leaf area index (LAI) and the maximum leaf area index (MLAI) were also found to affect the spatial variations in AGPP over most ecosystem types. Factors influencing the AGPP spatial variations differed among ecosystem types, but all included climatic and biotic factors. Therefore, climate inducing spatial distribution of ecosystem types and the non-zonal water supply made AGPP values and factors affecting the spatial variations in AGPP differ among ecosystem types, while different ecosystem types within the same vegetation region had comparable AGPP values. The spatial variation in AGPP over terrestrial ecosystems of China resulted from the integrated effects of climatic and biotic factors. Our study provided data support for improving the understanding of global AGPP spatial variability.


Subject(s)
Climate Change , Ecosystem , Biomass , China , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...