Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Front Vet Sci ; 11: 1394814, 2024.
Article in English | MEDLINE | ID: mdl-39132438

ABSTRACT

Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) is regarded as one of the most important priority pathogens within the One Health interface. However, few studies have investigated the occurrence of ESBL-EC in giant pandas, along with their antibiotic-resistant characteristics and horizontal gene transfer abilities. In this study, we successfully identified 12 ESBL-EC strains (8.33%, 12/144) out of 144 E. coli strains which isolated from giant pandas. We further detected antibiotic resistance genes (ARGs), virulence-associated genes (VAGs) and mobile genetic elements (MGEs) among the 12 ESBL-EC strains, and the results showed that 13 ARGs and 11 VAGs were detected, of which bla CTX-M (100.00%, 12/12, with 5 variants observed) and papA (83.33%, 10/12) were the most prevalent, respectively. And ISEcp1 (66.67%, 8/12) and IS26 (66.67%, 8/12) were the predominant MGEs. Furthermore, horizontal gene transfer ability analysis of the 12 ESBL-EC showed that all bla CTX-M genes could be transferred by conjugative plasmids, indicating high horizontal gene transfer ability. In addition, ARGs of rmtB and sul2, VAGs of papA, fimC and ompT, MGEs of ISEcp1 and IS26 were all found to be co-transferred with bla CTX-M. Phylogenetic analysis clustered these ESBL-EC strains into group B2 (75.00%, 9/12), D (16.67%, 2/12), and B1 (8.33%, 1/12), and 10 sequence types (STs) were identified among 12 ESBL-EC (including ST48, ST127, ST206, ST354, ST648, ST1706, and four new STs). Our present study showed that ESBL-EC strains from captive giant pandas are reservoirs of ARGs, VAGs and MGEs that can co-transfer with bla CTX-M via plasmids. Transmissible ESBL-EC strains with high diversity of resistance and virulence elements are a potential threat to humans, animals and surrounding environment.

2.
PLoS One ; 18(11): e0289028, 2023.
Article in English | MEDLINE | ID: mdl-38011149

ABSTRACT

This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.


Subject(s)
Anti-Infective Agents , Deer , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Drug Resistance, Bacterial/genetics , Ampicillin , China , Ruminants , Integrons/genetics , Microbial Sensitivity Tests
3.
Vet Sci ; 9(12)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36548866

ABSTRACT

Recent studies showed that Escherichia coli (E. coli) strains isolated from captive giant pandas have serious resistance to antibiotics and carry various antibiotic resistance genes (ARGs). ARGs or virulence-associated genes (VAGs) carried by antibiotic-resistant E. coli are considered as a potential health threat to giant pandas, humans, other animals and the environment. In this study, we screened ARGs and VAGs in 84 antibiotic-resistant E. coli strains isolated from clinically healthy captive giant pandas, identified the association between ARGs and VAGs and analyzed the phylogenetic clustering of E. coli isolates. Our results showed that the most prevalent ARG in E. coli strains isolated from giant pandas is blaTEM (100.00%, 84/84), while the most prevalent VAG is fimC (91.67%, 77/84). There was a significant positive association among 30 pairs of ARGs, of which the strongest was observed for sul1/tetC (OR, 133.33). A significant positive association was demonstrated among 14 pairs of VAGs, and the strongest was observed for fyuA/iroN (OR, 294.40). A positive association was also observed among 45 pairs of ARGs and VAGs, of which the strongest was sul1/eaeA (OR, 23.06). The association of ARGs and mobile gene elements (MGEs) was further analyzed, and the strongest was found for flor and intI1 (OR, 79.86). The result of phylogenetic clustering showed that the most prevalent group was group B2 (67.86%, 57/84), followed by group A (16.67%, 14/84), group D (9.52%, 8/84) and group B1 (5.95%, 5/84). This study implied that antibiotic-resistant E. coli isolated from captive giant pandas is a reservoir of ARGs and VAGs, and significant associations exist among ARGs, VAGs and MGEs. Monitoring ARGs, VAGs and MGEs carried by E. coli from giant pandas is beneficial for controlling the development of antimicrobial resistance.

SELECTION OF CITATIONS
SEARCH DETAIL