Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 20: 100890, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144759

ABSTRACT

Citrus aurantium L. fruit is a commonly used Chinese medicine whose therapeutic effects tends to be affected by growing conditions. In order to gain insights into the effects of growing location on the cuticular wax composition of C. aurantium L. fruit, we analyzed the differences in the wax composition of its fruits collected from different regions. The findings showed that the cuticular waxes in the fruit peels were mainly composed of fatty acids, which differed quantitatively in the chemical profiles of C. aurantium L. samples from different geographical conditions. Particularly, the concentrations of linoleic acid and stearic acid in the total component content of the fruit peel were above 1%, with a greater level in the geo-authentic samples. Thus, GC-MS-based wax analysis was first used for the chemical characterization and quantification of cuticular waxes, which could be considered as a rapid way for evaluating the quality of medicinal fruits.

2.
J Agric Food Chem ; 71(20): 7710-7722, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37167350

ABSTRACT

Urolithin A (UroA) is a microbial metabolite derived from ellagitannins and ellagic acid with good bioavailability. In this study, we explored the anticolitis activity of UroA and clarified the mechanism by 16S rDNA sequencing and metabonomics. UroA alleviated dextran sulfate sodium (DSS)-induced colitis in mice, characterized by a decreased disease activity index, increased colon length, and improved colonic histopathological lesions, along with inhibited phosphorylation of the mitogen-activated protein kinase signaling pathway. In addition, UroA improved gut microbiota dysbiosis and modulated the microbiota metabolome. Furthermore, targeted metabolomics focused on tryptophan catabolites showed that UroA significantly increased the production of indole-3-aldehyde (IAld) and subsequently led to increased colonic expression of aryl hydrocarbon receptor (AhR) and promoted the serum content of IL-22 in mice with colitis. Collectively, our data identified a novel anticolitis mechanism of UroA by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, promoting IAld production, and triggering AhR/IL-22 axis activation. However, a limitation noted in this study is that these beneficial effects of UroA were found at 50 µM in vitro and 20 mg/kg in vivo, which were nonphysiological concentrations.


Subject(s)
Colitis , Gastrointestinal Microbiome , Mice , Animals , Tryptophan/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Dysbiosis/metabolism , Colitis/chemically induced , Colon/metabolism , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
3.
Front Plant Sci ; 14: 1290836, 2023.
Article in English | MEDLINE | ID: mdl-38170141

ABSTRACT

Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.

4.
Front Plant Sci ; 13: 899079, 2022.
Article in English | MEDLINE | ID: mdl-35755665

ABSTRACT

Elaeagnus L. is found in wild or grown as ornamental plants and is increasingly regarded as underutilized berry shrubs by breeders. This genus has cosmopolitan distribution with various species widely distributed in China, Europe, the United States, and Canada. Interspecific hybrids, which have been reported several times, have attracted intense interest from plant breeders attempting to develop a fruit crop of Elaeagnus. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) is a powerful statistical modeling tool that provides insights into separations between experimental groups. In this study, the molecular phylogeny of Elaeagnus species was first discussed using the ITS and matK sequences for guiding the construction of a genetic basis pool. A morphological OPLS-DA clustering model based on the genetic divergence was also constructed for the first time, which effectively realized the morphological grouping of Chinese Elaeagnus species. The results showed that a total of 10 wild species widely distributed in China have the potential to develop fruit crops. Particularly, Elaeagnus conferta has the potential to provide a founder species with a large fruit size, while Elaeagnus Gonyanthes has the potential to provide important genetic resources with long pedicel. Elaeagnus lanceolata and Elaeagnus delavayi could be used to domesticate hybrids without spines, and the other five climbing shrubs could be used to develop high-yield crown-type commercial cultivars for automated field management. The top five contributing morphological traits affecting the current clustering model were V9 (flower color), V1 (flowering), V5 (evergreen or deciduous), V3 (leaf size), and V2 (fruiting). Furthermore, the grouping analysis indicated that the V9 was the most important factor affecting morphological clustering. Thereafter, the temporally calibrated phylogeny inferred from the matK sequence was used to reconstruct the origin and evolution of the genus Elaeagnus, and the results inferred an interesting geographic distribution pattern and potential cross-species interactions of Elaeagnus species at low latitudes in China. Our study also highlighted dispersal pattern investigation and genetic background analysis to improve future practices and policies related to species introduction of genetic basis pool.

5.
Food Funct ; 13(7): 3865-3878, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35274663

ABSTRACT

Hyperuricemia (HUA) is the second most common metabolic disease nowadays, and is characterized by permanently increased concentrations of serum uric acid. In this study, two novel hexapeptides (GPAGPR and GPSGRP) were identified from Apostichopus japonicus hydrolysate and predicted to have xanthine oxidase (XOD) inhibitory activity by molecular docking. Their in vitro XOD inhibition rates reached 37.3% and 48.6%, respectively, at a concentration of 40 mg mL-1. Subsequently, in vivo experiments were carried out in a HUA mouse model, and we found that both peptides reduced the serum uric acid by inhibiting uric acid biosynthesis and reabsorption, as well as alleviated renal inflammation via suppressing the activation of the NLRP3 inflammasome. 16S rDNA sequencing indicated that both peptide treatments reduced the richness and diversity of the gut microbiota, altered the composition in the phylum and genus levels, but different change trends were observed in the phylum Verrucomicrobia and genera Akkermansia, Dubosiella, Alloprevotella, Clostridium unclassified and Alistipes. In addition, changes in the renal microRNA (miRNA) profiles induced by GPSGRP treatment were analyzed; 21 differentially expressed (DE) miRNAs were identified among groups, and KEGG pathway analysis indicated that their potential target genes were involved in pluripotency of stem cell regulation, mTOR signaling pathway and proteoglycans. Moreover, ten miRNAs involved in the HUA onset and alleviation were identified, which showed a high correlation with genera related to the metabolism of short-chain fatty acids, bile acids and tryptophan. This study delineated two hexapeptides as potential microbiota modulators and miRNA regulators that can ameliorate HUA.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , MicroRNAs , Stichopus , Animals , Mice , MicroRNAs/genetics , Molecular Docking Simulation , Stichopus/metabolism , Uric Acid , Xanthine Oxidase
6.
Free Radic Biol Med ; 177: 326-336, 2021 12.
Article in English | MEDLINE | ID: mdl-34748910

ABSTRACT

This study aimed to investigate the dipeptide amino acid profiles correlated with xanthine oxidase (XOD) inhibitory activity and guide screening to determine suitable sources for XOD inhibitor protein hydrolysate preparation. The XOD inhibitory activities of 400 dipeptides were predicted via molecular docking and measured in vitro, and amino acids containing aromatic structures and charged residues were correlated with high XOD inhibitory properties. Subsequently, the effects of Cys-Glu and Lys-Glu, which showed the highest in vitro activities, were examined in hyperuricaemic mice, and were found to alleviate hyperuricaemia and modulate the gut microbiota. Furthermore, a suitable protein from Oreochromis mossambicus with high contents of charged (8.6%) and aromatic (1.67%) amino acids was screened, and the in vitro inhibitory rates of protein hydrolysate prepared from O. mossambicus against XOD were found to be 21.90% and 44.51% at 40 and 100 mg/ml, respectively. This study provides a strategy for screening protein hydrolysate sources with certain activities based on amino acid profiles.


Subject(s)
Amino Acids/pharmacology , Enzyme Inhibitors , Hyperuricemia , Xanthine Oxidase , Animals , Enzyme Inhibitors/pharmacology , Hyperuricemia/drug therapy , Mice , Molecular Docking Simulation , Protein Hydrolysates , Xanthine Oxidase/antagonists & inhibitors
7.
Mol Nutr Food Res ; 65(14): e2100147, 2021 07.
Article in English | MEDLINE | ID: mdl-34018696

ABSTRACT

SCOPE: This study aims to investigate the protective effect of Apostichopus japonicus oligopeptide (AJOP) on hyperuricemia, demonstrate the modulation of the gastrointestinal tract (GIT) microbiota, and clarify the underlying microbiota-dependent mechanism. METHODS AND RESULTS: Hyperuricemic mice treated with AJOP and subjected to corresponding fecal microbiota transplantation (FMT) are used to observe the beneficial effects of AJOP and microbiota. Gene transcriptions are measured using quantitative real-time PCR. The GIT (stomach, colon, cecum, and feces) microbiota is analyzed by 16S rDNA sequencing and the short-chain fatty acids are detected using GC-MS. Dietary administration of AJOP significantly alleviates hyperuricemia, regulates uric acid metabolism, inhibites the activation of the NLRP3 inflammasome and NF-κB-related signaling pathway, and restores m6A methylation levels. In addition, substantial heterogeneity is observed in GIT microbiota. Furthermore, FMT effectively alleviates hyperuricemia in mice by selectively regulating the corresponding pathways associated with AJOP treatment, indicating that the mechanism underlying the protective effects of AJOP is partly microbiota-dependent. CONCLUSION: This study demonstrates that AJOP exerts a protective effect on hyperuricemic mice by regulating uric acid metabolism, resulting in substantial heterogeneity among the GIT microbiota, thus mediating the beneficial effects in a microbiota-dependent manner.


Subject(s)
Gastrointestinal Microbiome/drug effects , Hyperuricemia/drug therapy , Oligopeptides/pharmacology , Plant Preparations/pharmacology , Stichopus/chemistry , Animals , Fecal Microbiota Transplantation , Male , Mice , Mice, Inbred ICR , NF-kappa B/metabolism , Signal Transduction/drug effects , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL