Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 494: 51-68, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35158017

ABSTRACT

Neuron apoptosis is a feature of secondary injury after traumatic brain injury (TBI). Evidence implies that excess calcium (Ca2+) ions and reactive oxidative species (ROS) play critical roles in apoptosis. In reaction to increased ROS, the anti-oxidative master transcription factor, Transient receptor potential Ankyrin 1 (TRPA1) allows Ca2+ ions to enter cells. However, the effect of TBI on the expression of TRPA1 and the role of TRPA1 in TBI are unclear. In the present study, TBI in the mouse brain was simulated using the weight-drop model. The process of neuronal oxidative stress was simulated in HT22 neuronal cells by treatment with hydrogen peroxide. We found that TRPA1 was significantly upregulated in neurons at 24 h after TBI. Neuronal apoptosis was increased in the in vivo and in vitro models; however, this increase was reduced by the functional inhibition of TRPA1 in both models. After TBI, TRPA1 was upregulated via nuclear factor, erythroid 2 like 2 (Nrf2) in neurons. TRPA1-mediated neuronal apoptosis after TBI might be achieved in part through the CaMKII/AKT/ERK signaling pathway. To sum up, TBI-triggered TRPA1 upregulation in neurons is mediated by Nrf2 and the functional blockade of TRPA1 attenuates neuronal apoptosis and improves neuronal dysfunction, partially mediated through the activation of the calcium/calmodulin dependent protein kinase II (CaMKII) extracellular regulated kinase (ERK)/protein kinase B (AKT) signaling pathway. Our results suggest that functional blockade of TRPA1 might be a promising therapeutic intervention related to ROS and Nrf2 in TBI.


Subject(s)
Brain Injuries, Traumatic , TRPA1 Cation Channel , Animals , Apoptosis , Brain Injuries, Traumatic/metabolism , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , TRPA1 Cation Channel/metabolism
2.
Front Neurosci ; 14: 616559, 2020.
Article in English | MEDLINE | ID: mdl-33613176

ABSTRACT

INTRODUCTION: S100 calcium-binding protein A8 (S100A8) is also known as macrophage-related protein 8, which is involved in various pathological processes in the central nervous system post-traumatic brain injury (TBI), and plays a critical role in inducing inflammatory cytokines. Accumulating evidences have indicated that toll-like receptor 4 (TLR4) is considered to be involved in inflammatory responses post TBI. The present study was designed to analyze the hypothesis that S100A8 is the key molecule that induces inflammation via TLR4 in TBI. METHODS: The weight-drop TBI model was used and randomly implemented on mice that were categorized into six groups: Sham, NS, S100A8, S100A8+TAK-242, TBI, and TBI+TAK-242 groups. In the S100A8+TAK-242 and TBI+TAK-242 groups, at half an hour prior to the intracerebroventricular administration of S100A8 or TBI, mice were intraperitoneally treated with TAK-242 that acts as a selective antagonist and inhibitor of TLR4. Furthermore, the protein recombinant of S100A8 was injected into the lateral ventricle of the brain of mice in the S100A8 and S100A8+TAK-242 groups. Sterile normal saline was injected into the lateral ventricle in the NS group. To evaluate the association between S100A8 and TLR4, Western blot, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and Nissl staining were employed. Simultaneously, the neurological score and brain water content were assessed. In the in vitro analysis, BV-2 microglial cells were stimulated with lipopolysaccharide LPS or S100A8 recombinant protein, with or without TAK-242. The expression of the related proteins was subsequently detected by Western blot or enzyme-linked immunosorbent assay. RESULTS: The levels of S100A8 protein and pro-inflammatory cytokines were significantly elevated after TBI. There was a reduction in the neurological scores of non-TBI animals with remarkable severe brain edema after the intracerebroventricular administration of S100A8. Furthermore, the TLR4, p-p65, and myeloid differentiation factor 88 (MyD88) levels were elevated after the administration of S100A8 or TBI, which could be restored by TAK-242. Meanwhile, in the in vitro analysis, due to the stimulation of S100A8 or LPS, there was an upregulation of p-p65 and MyD88, which could also be suppressed by TAK-242. CONCLUSION: The present study demonstrated that the TLR4-MyD88 pathway was activated by S100A8, which is essential for the development of inflammation in the brain after TBI.

SELECTION OF CITATIONS
SEARCH DETAIL
...