Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835762

ABSTRACT

The ATP-binding cassette subfamily G member 2 (ABCG2) serves crucial roles in secreting riboflavin and biotin vitamins into the milk of cattle, mice, and humans, as well as in the transportation of xenotoxic and cytostatic drugs across the plasma membrane. However, the specific role of the ABCG2 gene in water buffaloes (Bubalus bubalis), especially its effect on milk fat synthesis in buffalo mammary epithelial cells (BuMECs), remains inadequately understood. In this study, the full-length CDS of the buffalo ABCG2 gene was isolated and identified from the mammary gland in buffaloes. A bioinformatics analysis showed a high degree of similarity in the transcriptional region, motifs, and conservative domains of the buffalo ABCG2 with those observed in other Bovidae species. The functional role of buffalo ABCG2 was associated with the transportation of solutes across lipid bilayers within cell membranes. Among the 11 buffalo tissues detected, the expression levels of ABCG2 were the highest in the liver and brain, followed by the mammary gland, adipose tissue, heart, and kidney. Notably, its expression in the mammary gland was significantly higher during peak lactation than during non-lactation. The ABCG2 gene was identified with five SNPs in river buffaloes, while it was monomorphic in swamp buffaloes. Functional experiments revealed that ABCG2 increased the triglyceride (TAG) content by affecting the expression of liposynthesis-related genes in BuMECs. The results of this study underscore the pivotal role of the ABCG2 gene in influencing the milk fat synthesis in BuMECs.

2.
Foods ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36832783

ABSTRACT

Milk protein content is a key quality indicator of milk, and therefore elucidating its synthesis mechanism has been the focus of research in recent years. Suppressor of cytokine signaling 1 (SOCS1) is an important inhibitor of cytokine signaling pathways that can inhibit milk protein synthesis in mice. However, it remains elusive whether SOCS1 plays roles in the milk protein synthesis in the buffalo mammary gland. In this study, we found that the mRNA and protein expression levels of SOCS1 in buffalo mammary tissue during the dry-off period was significantly lower than those during lactation. Overexpression and knockdown experiments of SOCS1 showed that it influenced the expression and phosphorylation of multiple key factors in the mTOR and JAK2-STAT5 signaling pathways in buffalo mammary epithelial cells (BuMECs). Consistently, intracellular milk protein content was significantly decreased in cells with SOCS1 overexpression, while it increased significantly in the cells with SOCS1 knockdown. The CCAAT/enhancer binding protein α (CEBPA) could enhance the mRNA and protein expression of SOCS1 and its promoter activity in BuMECs, but this effect was eliminated when CEBPA and NF-κB binding sites were deleted. Therefore, CEBPA was determined to promote SOCS1 transcription via the CEBPA and NF-κB binding sites located in the SOCS1 promoter. Our data indicate that buffalo SOCS1 plays a significant role in affecting milk protein synthesis through the mTOR and JAK2-STAT5 signaling pathways, and its expression is directly regulated by CEBPA. These results improve our understanding of the regulation mechanism of buffalo milk protein synthesis.

3.
Anim Biosci ; 35(11): 1656-1665, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35798030

ABSTRACT

OBJECTIVE: Water buffalo, an important domestic animal in tropical and subtropical regions, play an important role in agricultural economy. It is an important source for milk, meat, horns, skin, and draft power, especially its rich milk that is the great source of cream, butter, yogurt, and many cheeses. In recent years, long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in many biological processes. Previous studies for the mammary gland development of water buffalo mainly focus on protein coding genes. However, lncRNAs of water buffalo remain poorly understood, and the regulation relationship between mammary gland development/milk production traits and lncRNA expression is also unclear. METHODS: Here, we sequenced 22 samples of the milk somatic cells from three lactation stages and integrated the current annotation and identified 7,962 lncRNA genes. RESULTS: By comparing the lncRNA genes of the water buffalo in the early, peak, and late different lactation stages, we found that lncRNA gene lnc-bbug14207 displayed significantly different expression between early and late lactation stages. And lnc-bbug14207 may regulate neighboring milk fat globule-EGF factor 8 (MFG-E8) and hyaluronan and proteoglycan link protein 3 (HAPLN3) protein coding genes, which are vital for mammary gland development. CONCLUSION: This study provides the first genome-wide identification of water buffalo lncRNAs and unveils the potential lncRNAs that impact mammary gland development.

4.
Sci Rep ; 12(1): 10588, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732883

ABSTRACT

Liver X receptor α (LXRα) is a ligand-dependent transcription factor and plays an important role in the regulation of cholesterol homeostasis, fatty acid biosynthesis and glucose metabolism. In this study, transcripts of LXRα gene were cloned and characterized from buffalo mammary gland, and three alternative splicing transcripts of buffalo LXRα gene were identified, named LXRα1, LXRα2 and LXRα3. The structure of the LXRα transcripts of buffalo and cattle was highly similar. Bioinformatics analysis showed that LXRα1 contains two complete functional domains of LXRα, one is the DNA-binding domain (NR_DBD_LXR) and the other is the ligand-binding domain (NR_LBD_LXR). The reading frame of LXRα2 is altered due to the skipping of exon 9, which truncates its encoding protein prematurely at the 400th amino acid residue, making it contain a complete DNA-binding domain and part of a ligand-binding domain. Due to the deletion of exon 4, the protein encoded by LXRα3 lacks 89 amino acid residues and contains only a complete ligand-binding domain, which makes it lose its transcriptional regulation function. In addition, motifs and conserved domains of three LXRα variants of buffalo were highly consistent with those of corresponding transcripts from other mammal species. Subcellular localization analysis showed that LXRα1 plays a functional role in the nucleus of buffalo mammary epithelial cells, while LXRα2 and LXRα3 are distributed in the nucleus and cytoplasm. Compared with non-lactating period, the mRNA abundance of the three LXRα transcripts in the mammary gland tissue of buffalo increased during lactating period, revealing that they play a key role in the synthesis of buffalo milk fat. Among the three LXRα transcripts, LXRα1 has the highest expression in the mammary gland, indicating that it is the major transcript in the mammary gland and has important regulatory functions, while LXRα2 and LXRα3 may have regulatory effects on the function of LXRα1. This study highlights the key role of LXRα alternative splicing in the post-transcriptional regulation of buffalo lactation.


Subject(s)
Bison , Buffaloes , Alternative Splicing , Amino Acids/metabolism , Animals , Buffaloes/genetics , Buffaloes/metabolism , Cattle , DNA/metabolism , Female , Lactation/genetics , Ligands , Liver X Receptors/genetics , Liver X Receptors/metabolism , Mammary Glands, Animal/metabolism
5.
Sci Rep ; 12(1): 2390, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149744

ABSTRACT

Studies on 3T3-L1 cells and HepG2 hepatocytes have shown that phosphatidic acid phosphohydrolase1 (LPIN1) plays a key role in adipogenesis, acting as a co-activator of peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1a) to regulate fatty acid metabolism. However, the functional role and regulatory mechanism of LPIN1 gene in milk fat synthesis of buffalo are still unknown. In this study, overexpression of buffalo LPIN1 gene transfected with recombinant fusion expression vector significantly increased the expression of AGPAT6, DGAT1, DGAT2, GPAM and BTN1A1 genes involved in triglyceride (TAG) synthesis and secretion, as well as PPARG and SREBF1 genes regulating fatty acid metabolism in the buffalo mammary epithelial cells (BMECs), while the lentivirus-mediated knockdown of buffalo LPIN1 dramatically decreased the relative mRNA abundance of these genes. Correspondingly, total cellular TAG content in the BMECs increased significantly after LPIN1 overexpression, but decreased significantly after LPIN1 knockdown. In addition, the overexpression or knockdown of PPARG also enhanced or reduced the expression of LPIN1 and the transcriptional activity of its promoter. The core region of buffalo LPIN1 promoter spans from - 666 bp to + 42 bp, and two PPAR response elements (PPREs: PPRE1 and PPRE2) were identified in this region. Site mutagenesis analysis showed that PPARG directly regulated the transcription of buffalo LPIN1 by binding to the PPRE1 and PPRE2 on its core promoter. The results here reveal that the LPIN1 gene is involved in the milk fat synthesis of BMECs, and one of the important pathways is to participate in this process through direct transcriptional regulation of PPARG, which in turn significantly affects the content of TAG in BMECs.


Subject(s)
Buffaloes/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , PPAR gamma/metabolism , Phosphatidate Phosphatase/genetics , Triglycerides/biosynthesis , Animals , Buffaloes/genetics , Female , Gene Expression Regulation , Milk/metabolism , PPAR gamma/genetics , Phosphatidate Phosphatase/metabolism , Transcription, Genetic
6.
Biosens Bioelectron ; 197: 113734, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34736113

ABSTRACT

The performance of photoelectrochemical (PEC) analysis system relies closely on the properties of the photoelectric electrodes. It is of great significance to integrate photoactive materials with flexible substrates to construct ultra-sensitive PEC sensors for practical application. This work reports a novel photoelectrode developed by immobilizing α-Fe2O3 nanoparticles (NPs)/defect-rich carbon nitride (d-C3N4), an excellent Z-scheme heterojunction photoelectric material, onto three-dimensional (3D) flexible carbon fiber textile. Specifically, 3D hierarchical structure of flexible carbon fiber textile provides larger specific surface area and higher mechanical strength than traditional electrodes, resulting in more reaction sites and faster reaction kinetics to achieve signal amplification. Simultaneously, α-Fe2O3/d-C3N4 Z-scheme heterojunction exhibits enhanced light absorption capability and high redox ability, thus dramatically improving the PEC performance. This photoelectrode was used to construct a flexible PEC aptasensor for ultrasensitive detection of penbritin, demonstrating excellent performance in terms of wide linear range (0.5 pM-50 nM), low detection limit (0.0125 pM) and high stability. The design principle is applicable to the manufacture of other photoelectric sensing systems, which provides an avenue for the development of portable environmental analysis and field diagnostics equipment.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ampicillin , Electrochemical Techniques , Electrodes , Limit of Detection
7.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 1-11, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33742447

ABSTRACT

Recent studies have shown elongase of very-long-chain fatty acids 6 (ELOVL6) is a vital protein for endogenous synthesis of saturated and monounsaturated long-chain fatty acids in some mammals. Nevertheless, its role in lipid synthesis in buffalo mammary gland is still unclear. In this work, the full-length coding sequence (CDS) of ELOVL6 was cloned and identified from buffalo mammary gland. As a result, the CDS of this gene is 795 bp, which encodes a polypeptide of 264 amino acid residues. The buffalo ELOVL6 contains an ELO domain which belongs to the ELO superfamily. Among the 10 tissues of buffalo in peak lactation detected by RT-qPCR, the expression level of ELOVL6 was the highest in the brain, followed by the spleen, and then decreased in the mammary gland, muscle, kidney, heart, liver, rumen, intestine and lung. However, only the expression in the brain and spleen was statistically different from that in other tissues (p < 0.05). Compared with that of the dry-off period, the mRNA abundance of ELOVL6 in the mammary gland was significantly increased in peak lactation. The experiments based on lentivirus transfection in buffalo mammary epithelial cells (BuMECs) displayed that the overexpression of ELOVL6 markedly promoted the expression of INSIG1, INSIG2, SREBP, PPARG, FASN, GPAM, DGAT2 and APGAT6 genes, and the knockdown of ELOVL6 significantly decreased the mRNA abundance of INSIG2, SREBP, FASN, SCD, GPAM, APGAT6 and TIP47 genes. In addition, the increase or decrease of ELOVL6 expression level also caused the corresponding change of total triglyceride content in the BuMECs. The results here suggest that the ELOVL6 can catalyse the synthesis of long-chain fatty acids in the BuMECs, and it can indirectly affect the expression of genes related to milk fat synthesis through its catalytic products to promote the lipid biosynthesis of BuMECs.


Subject(s)
Buffaloes , Fatty Acid Elongases/metabolism , Fatty Acids/biosynthesis , Mammary Glands, Animal , Animals , Epithelial Cells , Female , Lactation , Milk
8.
J Dairy Sci ; 104(12): 12980-12993, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34593221

ABSTRACT

Liver X receptor α (LXRα; NR1H3) is an important transcription factor that can facilitate milk fat synthesis by regulating the transcription of FASN in mice and goats. Nevertheless, the lipid synthesis related to LXRα and its regulation on FASN in the buffalo mammary gland remain elusive. Here, we demonstrated that the mRNA and protein expression of LXRα in buffalo mammary tissue increased in lactation compared with that in the dry-off period. Overexpression of NR1H3 enhanced the lipid droplet formation and triacylglycerol concentration in buffalo mammary epithelial cells (BuMEC), whereas the knockdown of NR1H3 resulted in a decrease in the number of lipid droplets. At the same time, NR1H3 also affected the expression of regulatory factors (INSIG1, INSIG2, SREBF1, and PPARG) related to milk fat synthesis and that of genes involved in de novo synthesis (FASN, ACACA, and SCD), and uptake and transport (LPL, CD36, and FABP3) of fatty acids as well as triacylglycerol synthesis (GPAM, APGAT6, and DGAT1). Luciferase reporter assays indicated that overexpression of NR1H3 resulted in an increase in the activity of FASN promoter, whereas the knockdown of NR1H3 had an opposite effect. When NR1H3 was overexpressed, mutations in LXRE or SRE could decrease the promoter activity of FASN. Furthermore, mutagenesis of both LXRE and SRE within the FASN promoter completely eliminated the induced activity of LXRα. Our results reveal that buffalo LXRα promotes milk fat synthesis through regulating the expression of FASN by directly interacting with FASN promoter and affecting the SREBF1 expression. This study underscores a crucial role of LXRα in regulating lipid synthesis of the buffalo mammary gland.


Subject(s)
Liver X Receptors , Mammary Glands, Animal , Milk , Animals , Buffaloes , Epithelial Cells , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Female , Lactation , Lipogenesis/genetics , Liver X Receptors/genetics , Liver X Receptors/metabolism , Mammary Glands, Animal/metabolism
9.
Nat Chem ; 13(11): 1093-1100, 2021 11.
Article in English | MEDLINE | ID: mdl-34635816

ABSTRACT

Chiral Brønsted acid-catalysed asymmetric synthesis has received tremendous interest over the past decades, and numerous efficient synthetic methods have been developed based on this approach. However, the use of chiral Brønsted acids in these reactions is mostly limited to the activation of imine and carbonyl moieties, and the direct activation of carbon-carbon triple bonds has so far not been invoked. Here we show that chiral Brønsted acids enable the catalytic asymmetric dearomatization reactions of naphthol-, phenol- and pyrrole-ynamides by the direct activation of alkynes. This method leads to the practical and atom-economic construction of various valuable spirocyclic enones and 2H-pyrroles that bear a chiral quaternary carbon stereocentre in generally good-to-excellent yields with excellent chemo-, regio- and enantioselectivities. The activation mode of chiral Brønsted acid catalysis revealed in this study is expected to be of broad utility in catalytic asymmetric reactions that involve ynamides and the related heteroatom-substituted alkynes.

10.
J Dairy Res ; 88(4): 401-406, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35042574

ABSTRACT

Insulin-induced gene 2 (INSIG2) is a recently identified gene that is implicated in the regulation of cholesterol metabolism and lipogenesis in mammals. Although the data in goats emphasizes a role for INSIG2 in milk fat synthesis, the regulatory mechanism in buffalo is not clear. In this study, we analyzed the protein abundance of INSIG2 at peak lactation and dry-off period in buffalo mammary tissue. The results indicated that, relative to the peak lactation, the protein abundance of INSIG2 in the dry-off period was higher. To determine the function of INSIG2 in milk fat synthesis, INSIG2 was overexpressed and knocked down by lentiviral transfection in buffalo mammary epithelial cells (BuMECs). The response to overexpressing INSIG2 included down-regulation of SREBP, PPARG, FASN, ELOVL6, SCD, APGAT6 and TIP47 coupled with a decrease in content of triacylglycerol (TAG). However, in response to knockdown of INSIG2, the significant increase in content of TAG along with marked up-regulation of SREBP, PPARG, FASN, ELOVL6, SCD, APGAT6 and TIP47 suggests that INSIG2 negatively affects milk fat synthesis in BuMECs. No significant difference in mRNA abundance of GPAM and DGAT2 in response to overexpression or interference of INSIG2 indicates that they might also be influenced by other regulatory factors. Taken together, our results provide strong support for the negative effect of INSIG2 on milk fat synthesis in BuMECs.


Subject(s)
Buffaloes , Insulins , Animals , Epithelial Cells , Fatty Acids , Female , Lactation , Mammary Glands, Animal , Milk
11.
J Dairy Res ; 87(3): 349-355, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32907640

ABSTRACT

We hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


Subject(s)
Buffaloes , Epithelial Cells/drug effects , Fats/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mammary Glands, Animal/cytology , Milk/chemistry , Animals , Cells, Cultured , Epithelial Cells/metabolism , Female , Gene Expression Regulation , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA Interference
12.
Arch Anim Breed ; 63(2): 249-259, 2020.
Article in English | MEDLINE | ID: mdl-32775610

ABSTRACT

PPARGC1A exerts important functions in activating many nuclear receptors and transcription factors that are related to energy balance. Previous studies have shown that PPARGC1A gene is associated with lactation traits of dairy cattle. However, the functional role of the buffalo PPARGC1A gene is still unknown. In this work, the complete coding sequence (CDS) of buffalo PPARGC1A was isolated and characterized for swamp and river buffalo. The CDS length of PPARGC1A for both types of buffalo was the same, which was composed of 2394 nucleotides and encoded a peptide composed of 797 amino acid residues. This protein belonged to a hydrophilic protein and contained one RRM_PPARGC1A domain (AA 674-764) without a signal peptide or a transmembrane domain. The differential expressions of this gene in 10 buffalo tissues in lactation and non-lactation displayed that the PPARGC1A was highly expressed in the muscle, heart, liver, brain and kidney of both non-lactating and lactating periods, but its expression was significantly different in the muscle, heart, liver, small intestine, mammary gland, rumen, spleen and lung between the two periods. Eight single nucleotide polymorphisms (SNPs) were found in buffalo, in which the c.778C > T, c.1257G > A and c.1311G > A were shared by two types of buffalo with similar allele frequencies, while the c.419C > T, c.759A > G, c.920C > A, c.926G > A and c.1509A > T were only observed in river buffalo. The SNP419, SNP920 and SNP926 were non-synonymous, which led to the amino acid changes of p.Ser140Phe, p.Pro307His and p.Arg309Lys. Seven nucleotide differential sites were identified in the PPARGC1A gene between buffalo and other Bovidae species. Phylogenetic analysis indicated that buffaloes were independently clustered into one branch, but they were closely related to the species of the Bos genus. The results indicate that buffalo PPARGC1A is an inducible transcriptional coactivator involved in regulating carbohydrate and fat metabolism. It can exert a functional role in a variety of buffalo tissues and may participate in milk fat synthesis and development in the mammary gland.

13.
ACS Nano ; 14(4): 4336-4351, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32275394

ABSTRACT

The abundant species of functional nanomaterials have attracted tremendous interests as components to construct multifunctional composites for cancer theranostics. However, their distinct chemical properties substantially require a specific strategy to integrate them in harmony. Here, we report the preparation of a distinctive multifunctional composite by encapsulating small-sized semiconducting copper bismuth sulfide (CBS) nanoparticles and rare-earth down-conversion (DC) nanoparticles in larger-sized zeolitic imidazolate framework-8 (ZIF8) nanoparticles, followed by loading an anticancer drug, doxorubicin (DOX). Such composites can be used for tetramodal imaging, including traditional computed tomography and magnetic resonance imaging and, recently, for photoacoustic imaging and fluorescence imaging. With a pH-responsive release of the encapsulated components, synergistic radio-chemotherapy with a high (87.6%) tumor inhibition efficiency is achieved at moderate doses of the CBS&DC-ZIF8@DOX composite with X-ray irradiation. This promising strategy highlights the extending capacity of zeolitic imidazolate frameworks to encapsulate multiple distinct components for enhanced cancer imaging and therapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Zeolites , Antineoplastic Agents/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
14.
Arch Anim Breed ; 63(2): 345-354, 2020.
Article in English | MEDLINE | ID: mdl-34084897

ABSTRACT

The α S 2 -casein ( α S 2 -CN) is a member of the casein family associated with milk traits in ruminants, but so far the buffalo CSN1S2 gene has not been well understood. In this work, the polymorphisms of CSN1S2 in river and swamp buffalo were detected using direct sequencing of polymerase chain reaction (PCR) products. As a result, 13 single nucleotide polymorphisms (SNPs) were identified in the coding sequence (CDS) of CSN1S2 in two types of buffalo, of which eight SNPs were non-synonymous. The amino acid changes caused by c.580T > C and c.642C > G may affect the function of buffalo α S 2 -CN. A total of 11 CSN1S2 CDS haplotypes were defined, and accordingly 11 variants of buffalo α S 2 -CN were inferred and named. The CSN1S2 CDSs of both types of buffalo were 669 nucleotides, which encoded a precursor of 222 amino acids (AAs), and the first 15 AAs constitute a signal peptide. The composition and physicochemical characteristics of two types of buffalo α S 2 -CNs were similar but slightly different from those of cattle α S 2 -CN. The α S 2 -CN mature peptides of buffalo and the species of Bos genus contained a casein domain, and their secondary structures were highly consistent, indicating that they are functionally similar. The results here provide initial insights into the variation, characteristics and biological function of buffalo CSN1S2.

15.
Arch Anim Breed ; 62(2): 585-596, 2019.
Article in English | MEDLINE | ID: mdl-31893216

ABSTRACT

Kappa casein plays a crucial role in the formation of stable casein micelles and has a key influence on milk-clotting properties. However, current understanding of buffalo CSN3 gene polymorphisms is not sufficient. In this study, the polymorphisms in the complete coding sequence (CDS) of the buffalo CSN3 were detected using PCR product direct sequencing. The CDS of CSN3 for river and swamp buffalo was the same in length, which contained an open reading frame of 573 nucleotides encoding a peptide containing 190 amino acid residues. A total of eight single nucleotide polymorphisms (SNPs) was identified in two types of buffalo. Among them, c.86C>T, c.252G>C, c.445G>A, c.467C>T and c.516A>C were non-synonymous, which leads to p.Pro8Leu, p.Lys63Asn, p.Val128Ile, p.Thr135Ile and p.Glu151Asp substitutions in buffalo kappa casein ( κ -CN), respectively. The substitution of p.Thr135Ile may exert a vital effect on the function of buffalo κ -CN. Eleven haplotypes were defined based on the SNPs found in buffalo, and accordingly, seven protein variants and four synonymous variants of buffalo κ -CN were inferred, called variants A, B, B 1 , C, C 1 , C 2 , D, E, F, F 1 and G. The variants observed in water buffalo did not exist in the Bos genus. In addition, 14 amino acid differential sites of κ -CN between buffalo and the Bos genus were identified, of which 3 were located at glycosylation sites (80S, 96T, 141S) and 4 at phosphorylation sites (19S, 80S, 96T, 141S). It is speculated that they may lead to differences in the physicochemical properties of κ -CN between buffalo and the Bos genus. This study will lay a foundation for exploring the association between the variation in the CSN3 gene and the lactation traits of buffalo.

16.
Org Lett ; 20(24): 7748-7752, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30495967

ABSTRACT

A porous organic polymer (POL-Xantphos) was synthesized and employed as a heterogeneous ligand for selective hydrosilylation of alkynes. It exhibits high selectivity and catalytic efficiency toward a broad range of alkynes. Owing to the confinement effect of the micropore structure, POL-Xantphos was far superior to the monomeric Xantphos ligands in controlling the selectivity. By performing hydrosilylation in a flow reactor system, separation and regeneration of the Ni/POL-Xantphos catalyst are easily achieved without any loss in selectivity or activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...