Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 32(2): 1843-1850, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297727

ABSTRACT

A distributed feedback (DFB) laser array of twenty wavelengths with highly reflective and anti-reflective (HR-AR) coated facets is both theoretically analyzed and experimentally validated. While the HR facet coating enhances high wall-plug efficiency, it inadvertently introduces a random facet grating phase, thereby compromising the lasing wavelength's predictability and the stability of the single-longitudinal-mode (SLM). In this study, two key advancements are introduced: first, the precisely spaced wavelength is achieved with an error of within ±0.2 nm using the reconstruction-equivalent-chirp (REC) technique; second, the random grating phase on the HR-coated facet is compensated by a controllable distributed phase shift through a two-section laser structure. The SLM stability can be improved while the wavelength can be continuously tuned to the standard wavelength grid. The overall chip size is compact with an area of 4000 × 500 µm2. The proposed laser array has a light power intensity above 13 dBm per wavelength, a high side mode suppression ratio above 50 dB, and low relative intensity noise under -160 dB/Hz. These attributes make it apt for deployment in DWDM-based optical communication systems and as a light source for optical I/O.

2.
Sensors (Basel) ; 23(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005582

ABSTRACT

We present a microsphere-based microsensor that can measure the vibrations of the miniature motor shaft (MMS) in a small space. The microsensor is composed of a stretched fiber and a microsphere with a diameter of 5 µm. When a light source is incident on the microsphere surface, the microsphere induces the phenomenon of photonic nanojet (PNJ), which causes light to pass through the front. The PNJ's full width at half maximum is narrow, surpassing the diffraction limit, enables precise focusing on the MMS surface, and enhances the scattered or reflected light emitted from the MMS surface. With two of the proposed microsensors, the axial and radial vibration of the MMS are measured simultaneously. The performance of the microsensor has been calibrated with a standard vibration source, demonstrating measurement errors of less than 1.5%. The microsensor is expected to be used in a confined space for the vibration measurement of miniature motors in industry.

SELECTION OF CITATIONS
SEARCH DETAIL