Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Transl Oncol ; 46: 101989, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38781861

ABSTRACT

Lung cancer has one of the highest mortality rates worldwide, with non-small-cell lung cancer (NSCLC) constituting approximately 85% of all cases. Demethylzeylasteral (DEM), extracted from Tripterygium wilfordii Hook F, exhibits notable anti-tumor properties. In this study, we revealed that DEM could effectively induce NSCLC cell apoptosis. Specifically, DEM can dose-dependently suppress the viability and migration of human NSCLC cells. RNA-seq analysis revealed that DEM regulates the P53-signaling pathway, which was further validated by assessing crucial proteins involved in this pathway. Biacore analysis indicated that DEM has high affinity with the P53 protein. The CDX model demonstrated DEM's anti-tumor actions. This work provided evidence that DEM-P53 interaction stabilizes P53 protein and triggers downstream anti-tumor activities. These findings indicate that DEM treatment holds promise as a potential therapeutic approach for NSCLC, which warrants further clinical assessment in patients with NSCLC.

2.
Nano Lett ; 24(5): 1792-1800, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278136

ABSTRACT

A comprehensive approach for the construction of NIR-I/NIR-II nanofluorophores with exceptional brightness and excellent chemo- and photostability has been developed. This study first confirmed that the amphiphilic molecules with stronger hydrophobic moieties and weaker hydrophilic moieties are superior candidates for constructing brighter nanofluorophores, which are attributed to its higher efficiency in suppressing the intramolecular charge transfer/aggregation-caused fluorescence quenching of donor-acceptor-donor type fluorophores. The prepared nanofluorophore demonstrates a fluorescence quantum yield exceeding 4.5% in aqueous solution and exhibits a strong NIR-II tail emission up to 1300 nm. The superior performance of the nanofluorophore enabled the achievement of high-resolution whole-body vessel imaging and brain vessel imaging, as well as high-contrast fluorescence imaging of the lymphatic system in vivo. Furthermore, their potential for highly sensitive fluorescence detection of tiny tumors in vivo has been successfully confirmed, thus supporting their future applications in precise fluorescence imaging-guided surgery in the early stages of cancer.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Fluorescent Dyes/chemistry , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods
3.
Mater Today Bio ; 23: 100841, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37920292

ABSTRACT

Functional vascularization is crucial for maintaining the long-term patency of tissue-engineered trachea and repairing defective trachea. Herein, we report the construction and evaluation of a novel cell-free tissue-engineered tracheal scaffold that effectively promotes vascularization of the graft. Our findings demonstrated that exosomes derived from endothelial progenitor cells (EPC-Exos) enhance the proliferation, migration, and tube formation of endothelial cells. Taking advantage of the angiogenic properties of EPC-Exos, we utilized methacrylate gelatin (GelMA) as a carrier for endothelial progenitor cell exosomes and encapsulated them within a 3D-printed polycaprolactone (PCL) scaffold to fabricate a composite tracheal scaffold. The results demonstrated the excellent angiogenic potential of the methacrylate gelatin/vascular endothelial progenitor cell exosome/polycaprolactone tracheal scaffold. Furthermore, in vivo reconstruction of tracheal defects revealed the capacity of this composite tracheal stent to remodel vasculature. In conclusion, we have successfully developed a novel tracheal stent composed of methacrylate gelatin/vascular endothelial progenitor exosome/polycaprolactone, which effectively promotes angiogenesis for tracheal repair, thereby offering significant prospects for clinical and translational medicine.

4.
ACS Appl Mater Interfaces ; 15(24): 29321-29329, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289002

ABSTRACT

Afterglow luminescence has garnered significant attention due to its excellent optical properties. Currently, most afterglow phenomena are produced by persistent luminescence following cessation of the excitation light. However, it remains a challenge to control the afterglow luminescence process due to rapid photophysical or photochemical changes. Here, we develop a new strategy to control the afterglow luminescence process by introducing pyridones as singlet oxygen (1O2) storage reagents (OSRs), where 1O2 can be stored in covalent bonds at relatively low temperatures and released upon heating. The afterglow luminescence properties, including afterglow intensity, decay rate, and decay process, can be tuned flexibly by regulating temperature or OSR structures. Based on the controllable luminescence properties, we devise a new strategy for information security. We believe that such an excellent luminescent system also holds remarkable potential for applications in many other fields.

5.
Stat Methods Med Res ; 32(6): 1082-1099, 2023 06.
Article in English | MEDLINE | ID: mdl-37015346

ABSTRACT

The restricted mean survival time (RMST), which evaluates the expected survival time up to a pre-specified time point τ, has been widely used to summarize the survival distribution due to its robustness and straightforward interpretation. In comparative studies with time-to-event data, the RMST-based test has been utilized as an alternative to the classic log-rank test because the power of the log-rank test deteriorates when the proportional hazards assumption is violated. To overcome the challenge of selecting an appropriate time point τ, we develop an RMST-based omnibus Wald test to detect the survival difference between two groups throughout the study follow-up period. Treating a vector of RMSTs at multiple quantile-based time points as a statistical functional, we construct a Wald χ2 test statistic and derive its asymptotic distribution using the influence function. We further propose a new procedure based on the influence function to estimate the asymptotic covariance matrix in contrast to the usual bootstrap method. Simulations under different scenarios validate the size of our RMST-based omnibus test and demonstrate its advantage over the existing tests in power, especially when the true survival functions cross within the study follow-up period. For illustration, the proposed test is applied to two real datasets, which demonstrate its power and applicability in various situations.


Subject(s)
Proportional Hazards Models , Kaplan-Meier Estimate , Survival Rate , Endpoint Determination/methods , Survival Analysis
6.
Angew Chem Int Ed Engl ; 62(13): e202218670, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36723229

ABSTRACT

Photochemical afterglow systems have drawn considerable attention in recent years due to their regulable photophysical properties and charming application potential. However, conventional photochemical afterglow suffered from its unrepeatability due to the consumption of energy cache units as afterglow photons are emitted. Here we report a novel strategy to realize repeatable photochemical afterglow (RPA) through the reversible storage of 1 O2 by 2-pyridones. Near-infrared afterglow with a lifetime over 10 s is achieved, and its initial intensity shows no significant reduction over 50 excitation cycles. A detailed mechanism study was conducted and confirmed the RPA is realized through the singlet oxygen-sensitized fluorescence emission. Furthermore, the generality of this strategy is demonstrated and tunable afterglow lifetimes and colors are achieved by rational design. The developed RPA is further applied for attacker-misleading information encryption, presenting a repeatable-readout.

7.
Mar Pollut Bull ; 186: 114423, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495609

ABSTRACT

The Secchi disk depth (SD) is an important parameter in aquatic ecosystem monitoring. As algal growth depends on solar irradiation, the SD - a measure of light extinction - gives an indirect indication of the chlorophyll concentration. However, most SD measurements are manually based and too sparse to resolve water quality variations during algal blooms. A remotely controlled automatic system for field measurement of light extinction has been developed and installed in three marine fish culture zones in Hong Kong. The visual images of the disk at different prescribed depths and the surrounding water are taken. Based on the contrast theory and image analysis, the recorded light intensity distributions can be analyzed to give the SD and the light extinction coefficient. The method has been extensively verified by field data over a wide range of water quality and hydro-meteorological conditions. The proposed system enables high frequency SD measurements on demand for environmental management and emergency response.


Subject(s)
Ecosystem , Environmental Monitoring , Animals , Environmental Monitoring/methods , Chlorophyll/analysis , Water Quality , Eutrophication
8.
JAMA Intern Med ; 183(1): 72-73, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36374492

ABSTRACT

This case report describes a patient in their 60s who presented to the hospital with sudden loss of consciousness and foaming at the mouth.


Subject(s)
Electrocardiography , Syncope , Humans , Syncope/etiology
9.
Micromachines (Basel) ; 13(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296129

ABSTRACT

This paper proposed an improved flow-focusing microchannel with a constricted continuous phase inlet to increase microbubble generation frequency and reduce microbubbles' diameter. The design variables were obtained by Latin hypercube sampling, and the radial basis function (RBF) surrogate model was used to establish the relationship between the objective function (microbubble diameter and generation frequency) and the design variables. Moreover, the optimized design of the nondominated sorting genetic algorithm II (NSGA-II) algorithm was carried out. Finally, the optimization results were verified by numerical simulations and compared with those of traditional microchannels. The results showed that dripping and squeezing regimes existed in the two microchannels. The constricted continuous phase inlet enhanced the flow-focusing effect of the improved microchannel. The diameter of microbubbles obtained from the improved microchannel was reduced from 2.8141 to 1.6949 µm, and the generation frequency was increased from 64.077 to 175.438 kHz at the same capillary numbers (Ca) compared with the traditional microchannel. According to the fitted linear function, it is known that the slope of decreasing microbubble diameter with increasing Ca number and the slope of increasing generation frequency with increasing Ca number are greater in the improved microchannel compared with those in the traditional microchannel.

10.
Stat Med ; 41(24): 4903-4923, 2022 10 30.
Article in English | MEDLINE | ID: mdl-35948279

ABSTRACT

Patients with chronic diseases, such as cancer or epilepsy, are often followed through multiple stages of clinical interventions. Dynamic treatment regimes (DTRs) are sequences of decision rules that assign treatments at each stage based on measured covariates for each patient. A DTR is said to be optimal if the expectation of the desirable clinical benefit reaches a maximum when applied to a population. When there are three or more options for treatments at each decision point and the clinical outcome of interest is a time-to-event variable, estimating an optimal DTR can be complicated. We propose a doubly robust method to estimate optimal DTRs with multicategory treatments and survival outcomes. A novel blip function is defined to measure the difference in expected outcomes among treatments, and a doubly robust weighted least squares algorithm is designed for parameter estimation. Simulations using various weight functions and scenarios support the advantages of the proposed method in estimating optimal DTRs over existing approaches. We further illustrate the practical value of our method by applying it to data from the Standard and New Antiepileptic Drugs study. In this analysis, the proposed method supports the use of the new drug lamotrigine over the standard option carbamazepine. When the actual treatments match the estimated optimal treatments, survival outcomes tend to be better. The newly developed method provides a practical approach for clinicians that is not limited to cases of binary treatment options.


Subject(s)
Anticonvulsants , Models, Statistical , Carbamazepine , Computer Simulation , Humans , Lamotrigine/therapeutic use
11.
J Chem Phys ; 154(20): 204302, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34241172

ABSTRACT

A systematic structure and property investigation of MnGen - (n = 3-14) was conducted by means of density functional theory coupled with mass-selected anion photoelectron spectroscopy. This combined theoretical and experimental study allows global minimum and coexistence structures to be identified. It is found that the pentagonal bipyramid shape is the basic framework for the nascent growth process of MnGen - (n = 3-10), and from n = 10, the endohedral structures can be found. For n = 12, the anion MnGe12 - cluster probably includes two isomers: a major isomer with a puckered hexagonal prism geometry and a minor isomer with a distorted icosahedron geometry. Specifically, the puckered hexagonal prism isomer follows the Wade-Mingos rules and can be suggested as a new kind of superatom with the magnetic property. Furthermore, the results of adaptive natural density partitioning and deformation density analyses suggest a polar covalent interaction between Ge and Mn for endohedral clusters of MnGe12 -. The spin density and natural population analysis indicate that MnGen - clusters have high magnetic moments localized on Mn. The density of states diagram visually shows the significant spin polarization for endohedral structures and reveals the weak interaction between the Ge 4p orbital and the 4s, 3d orbitals of Mn.

12.
Cancer Biol Ther ; 22(4): 324-332, 2021 04 03.
Article in English | MEDLINE | ID: mdl-33970779

ABSTRACT

Evidence suggests that Tripartite Motif Containing 11 (TRIM11) has pro-tumor activity in human non-small cell lung cancer (NSCLC). However, the roles and underlying mechanisms of TRIM11 in NSCLC have not yet been fully elucidated. In this work, human lung cancer cell lines (A549, H446, and H1975) were transfected with siRNA or lentiviruses to knockdown or overexpress TRIM11 and dual-specificity phosphatase 6 (DUSP6). The cell tumor response was assessed by determining the rate of proliferation, apoptosis, the uptake of 2-[N-(7-nitrobenz-2-oxa-1, 3-diaxol-4-yl) amino]-2-deoxyglucose (2-NBDG), and the secretion of lactic acid (LD). Dominant-negative (dn)-MEK1 was used to block the ERK1/2 pathway. The mechanism was investigated by assessing the protein levels of pyruvate kinase isozymes M2 (PKM2) and DUSP6, as well as the activation of ERK1/2 pathway. Our data confirmed the anti-cancer effect of siTRIM11 in human lung cancer by demonstrating inhibition of cancer cell proliferation, induction of apoptosis, prevention of 2-NBDG uptake, suppression of LD production, and prevention of lung cancer cell (A549) tumorigenicity in nude mice. The underlying mechanism involved the up-regulation of DUSP6 and the inhibition of ERK1/2 activity. Overexpression of TRIM11 induced tumorigenesis of NSCLC in vitro, and the activation of ERK1/2 was significantly reversed by DUSP6 overexpression or additional dn-MEK1 treatment. Interestingly, we confirmed TRIM11 as a deubiquitinase that regulated DUSP6 accumulation, indicating that lung cancer progression is regulated via the DUSP6-ERK1/2 pathway. In conclusion, TRIM11 is an oncogene in NSCLC, likely through the DUSP6-mediated ERK1/2 signaling pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Dual Specificity Phosphatase 6 , Lung Neoplasms , Tripartite Motif Proteins , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism , Heterografts , Humans , Lung Neoplasms/genetics , MAP Kinase Signaling System , Mice , Mice, Nude , Oncogenes , Signal Transduction , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
13.
Contemp Clin Trials ; 104: 106353, 2021 05.
Article in English | MEDLINE | ID: mdl-33706004

ABSTRACT

In oncology clinical trials, the primary endpoint is often time to an event of clinical interest, e.g., time to disease progression or time to death. As a result, progression-free survival (PFS: the time from initiation of treatment till disease progression or death whichever occurs first) and overall survival (OS: the time from initiation of treatment till death) are the focus of statistical analysis in comparison of two treatment arms. It is often argued that PFS may serve as a surrogate endpoint for OS, while the validity of such surrogacy is still under debates in different types of cancer. In practice, one may observe a significant difference in PFS but no significant difference in OS; or vice versa. We provide a concordance index (C-index) to measure the degree of concordance between PFS and OS, and elaborate on the PFS vs OS discrepancies using the C-index using simulation studies and real trial analysis.


Subject(s)
Neoplasms , Biomarkers , Disease Progression , Disease-Free Survival , Humans , Medical Oncology , Neoplasms/therapy , Progression-Free Survival
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118935, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32971345

ABSTRACT

The hydrated clusters [Formula: see text] (n = 1-4) in gas phase are studied by density functional theory calculations (DFT) coupled with stochastic kicking method. The global minimum structure of [Formula: see text] exhibits low-symmetry pattern since only one H atom of water molecules interact with Co- ion and other ones associate with a network of hydrogen bonds. The Co- ion prefers to locate at vertex site of the water molecular clusters in such way to reduce the repulsion with O atom. These results elucidate the formation of these low-lying isomers are determined by the delicate balance between ion-water and water-water interactions.

15.
J Mol Model ; 26(12): 337, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33169289

ABSTRACT

Great progress has been made in O2 adsorption on gold clusters. However, systematic investigations of O2 adsorption on [Formula: see text] clusters have not been reported. Here, we present a systematic study of the structural, electronic, and adsorptive properties of [Formula: see text] clusters by density functional theory (DFT) calculations coupled with stochastic kicking method. Global minimum searches for [Formula: see text] reveal that exohedral derivatives are more favored. Furthermore, the obtained ground-state structure exhibits significant stability, as judged by its larger adsorption energy (1.16 eV) and a larger HOMO-LUMO gap (0.57 eV). The simulated photoelectron spectra (PES) of [Formula: see text] isomers will be instructive to identify the structures in future experiments. There are three interesting discoveries in the present paper: (1) O2 undergoes chemical adsorption onto the parent [Formula: see text] clusters, but the amount of the adsorption energy is related to the parent [Formula: see text] clusters; (2) the process that O2 undergoes dissociative adsorption onto the parent [Formula: see text] clusters is exothermic; (3) [Formula: see text] isomers show smaller X-A energy gaps than those of parent [Formula: see text] clusters, reflecting that their geometric and electronic structures are distorted remarkably due to dissociative adsorption of O2.

16.
Phys Chem Chem Phys ; 22(36): 20545-20552, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966449

ABSTRACT

Lanthanide-doped silicon clusters have been extensively studied in the fields of optoelectronics, magnetism and nanomaterials during the last decade. Herein, systematic structure searches for typical neutral clusters of lanthanide-doped silicon clusters LnSin (n = 5, 10; Ln = Sm, Eu, Yb) have been performed by means of density functional theory coupled with the "stochastic kicking" global search technique. It is found that the Ln atom in LnSin prefers to locate on the surface of Sin to form an exohedral structure, and this exohedral configuration may dominate the nascent structure of LnSin. The spin density and Mulliken population analyses indicate that LnSin clusters possess remarkable magnetic moments (except for YbSin), which are mainly supplied by the Ln 4f electrons (except for Yb). Density of states visually shows the significant spin polarization for open-shell structures of SmSin and EuSin. As for the YbSin (n = 5, 10) system, it has a closed-shell electronic structure with a large HOMO-LUMO gap of 2.72 eV. Bonding analysis, including localized orbital locator and electron density difference, shows that the Si-Si covalent interaction and Sm-Si electrostatic interaction are important for the structural stability of LnSin.

17.
Materials (Basel) ; 12(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615115

ABSTRACT

The discrete element method (DEM) is commonly used to study various powders in motion during transportation, screening, mixing, etc.; this requires several microscopic parameters to characterize the complex mechanical behavior of the particles. Herein, a new discrete element parameter calibration method is proposed to calibrate the ultrafine agglomerated powder (recycled polyurethane powder). Optimal Latin hypercube sampling and virtual simulation experiments were conducted using the commercial DEM software; the microscopic variables included the static friction coefficient between the particles, collision recovery coefficient, Johnson-Kendall-Roberts surface energy, static friction coefficient between the particles and wall, and collision recovery coefficient. A predictive model based on genetic-algorithm-optimized feedforward neural network (back propagation) was developed to calibrate the microscopic DEM simulation parameters. The cycle search algorithm and mean-shift cluster analysis were used to confirm the input parameters' range by comparing the mean value of the dynamic angle of repose measured via the batch accumulation test. These parameters were verified by the baffle lifting method and the rotating drum method. This calibration method, once successfully developed, will be suitable for use in a variety of fine viscous powder dynamic flow conditions.

18.
J Mol Model ; 25(8): 221, 2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31302782

ABSTRACT

The rare-earth doped silicon-based clusters exhibit remarkable structural, physical, and chemical properties, which make them attractive candidates as building units in designing of cluster-based materials with special optical, electronic, and magnetic properties. The structural, stability, electronic, and magnetic properties of pure silicon Sin + 1 (n = 1-9) and rare-earth doped clusters SinEu (n = 1-9) are investigated using the "stochastic kicking" (SK) global search technique combined with density functional theory (DFT) calculations. It was found that: 1) the ground state structures of pure silicon clusters tend to form compact structures rather than cages with the increase of cluster size; 2) the ground state structures for doped species were found to be additional or substitutional sites, and the rare-earth atoms tend to locate on the surface of the silicon clusters; 3) the average binding energy of the doped clusters increased gradually and exhibited the final phenomenon of saturation with the increase of clusters size. The average binding energy of doped clusters was slightly higher than that of pure silicon clusters of the same size, which indicated that the rare-earth atom encapsulated by silicon enhanced the stability of the silicon clusters to some degree; 4) the doped clusters have strong total magnetic moments, which mainly originated from the contribution of rare-earth atoms, whereas the contribution of silicon atoms were almost negligible. As the cluster size increased, the total magnetic moments of binary mixed clusters tended to be stable.

19.
PLoS One ; 14(12): e0226204, 2019.
Article in English | MEDLINE | ID: mdl-31891596

ABSTRACT

Bike-sharing systems (BSS) have widely spread over many cities in the world as an environmentally friendly means to reduce air pollution and traffic congestion. This paper focuses on the bike-sharing rebalancing problem (BRP), which consists of two aspects: determining desired demands at each station and designing routes to redistribute bikes among stations. For the first task, we firstly apply the random forest, a very efficient machine learning algorithm, to forecast desired demands for each station, which can be easily implemented with distributed computing. For the second task, it belongs to the broad class of the vehicle routing problem with pickup and delivery (VRPPD). In most existing settings, all of the demands being strictly satisfied can lead to longer routes and add operational costs. In this paper, we propose a new model with unserved demands by relaxing demands satisfying constraints. Then, we design a distributed ant colony optimization (ACO) based algorithm with some specific modifications to increase its efficiency for the proposed model. We propose to use the percentage of average cost saving per bike as a metric to evaluate the performance of our method on cost-reducing and compare with existing methods and best-known values. Computational results on benchmarks show the advantage of our approach. Finally, we provide a real case study of BSS in Hangzhou, China, with insightful elaborations.


Subject(s)
Bicycling/economics , City Planning/methods , Transportation/methods , China , City Planning/economics , Cost-Benefit Analysis , Forecasting , Machine Learning , Transportation/economics
20.
Bioprocess Biosyst Eng ; 40(12): 1813-1823, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28887585

ABSTRACT

The goals of our study were to evaluate the biomechanical properties and cellular biocompatibility of 3D printed tracheal graft fabricated by polycaprolactone (PCL). Compared with native tracheal patch, there was a significant increase in maximum stress and elastic modulus for 3DP tracheal graft (p < 0.05). BMSCs were co-cultured under four different conditions to investigate cytotoxicity of the graft: (1) co-cultured with normal culture medium, as blank control; (2) co-cultured with perfluoropropylene, as negative control; (3) co-cultured with 3DP tracheal graft; and (4) co-cultured with polyvinyl chloride, as positive control. Moreover, the results of SRB assay showed that compared with blank and negative control group, there was no significant difference in the cell proliferation of 3DP tracheal graft group for 21 days (p > 0.05). These results revealed that 3DP tracheal graft in our study has favorable cellular biocompatibility and biomechanical properties, and, therefore, will be a promising alternative for tissue-engineered trachea.


Subject(s)
Biocompatible Materials , Printing, Three-Dimensional , Tissue Engineering/methods , Trachea , Animals , Biomechanical Phenomena , Coculture Techniques , Female , Microscopy, Electron, Scanning , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...