Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 611
Filter
1.
Article in English | MEDLINE | ID: mdl-38705747

ABSTRACT

INTRODUCTION: The COVID-19 pandemic caused by the SARS-CoV-2 virus greatly affected healthcare workers and healthcare systems. It also challenged schools and universities worldwide negatively affecting in-person education. We conducted this study is to assess the evolution of SARs-CoV-2 virulence over the course of the pandemic. METHODS: A combined cohort of University students in Spain and HCWs from the two hospitals in Spain, and one healthcare system in the Greater Boston area was followed prospectively from March 8th, 2020, to January 31st, 2022 for diagnosis with COVID-19 by PCR testing and related sequelae. Follow-up time was divided into four periods according to distinct waves of infection during the pandemic. Severity of COVID-19 was measured by case-hospitalization rate. Descriptive statistics and multivariable-adjusted statistics using the Poisson mixed-effects regression model were applied. As a sensitivity analysis, information on SARS-CoV-2 RNA in wastewater and COVID-19 deaths through May 30, 2023 from the Boston area was collected. RESULTS: For the last two periods of the study (January 1st to December 15th, 2021 and December 16th, 2021 to January 31st, 2022) and relative to the first period (March 8th to May 31st, 2020), the incidence rate ratios (IRRs) of hospitalization were 0.08 (95% CI, 0.03-0.17) and 0.03 (95% CI, 0.01-0.15), respectively. In addition, a relative risk 0.012 CI95% (0.012-0.012) was observed when comparing COVID-19 mortality versus SARS-CoV-2 RNA copies/mL in Boston-area wastewater over the period (16th December 2021 to 30th May 2023) and relative to the first period. CONCLUSIONS: The severity of COVID-19 and immunity of our populations evolved over time, resulting in a decrease in case severity. We found the case-hospitalization rate decreased more than 90% in our cohort despite an increase in incidence.

3.
J Mol Cell Biol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587834

ABSTRACT

Glutamate dehydrogenase 1 (GLUD1) is implicated in oncogenesis. However, little is known about the relationship between GLUD1 and hepatocellular carcinoma (HCC). In the present study, we demonstrated that the expression levels of GLUD1 significantly decreased in tumors, which was relevant to the poor prognosis of HCC. Functionally, GLUD1 silencing enhanced the growth and migration of HCC cells. Mechanistically, the upregulation of interleukin-32 through AKT activation contributes to GLUD1 silencing-facilitated hepatocarcinogenesis. The interaction between GLUD1 and AKT, as well as α-ketoglutarate regulated by GLUD1, can suppress AKT activation. In addition, LIM and SH3 protein 1 (LASP1) interacts with GLUD1 and induces GLUD1 degradation via the ubiquitin-proteasome pathway, which relies on the E3 ubiquitin ligase synoviolin (SYVN1), whose interaction with GLUD1 is enhanced by LASP1. In hepatitis B virus (HBV)-related HCC, the HBV X protein (HBX) can suppress GLUD1 with the participation of LASP1 and SYVN1. Collectively, our data suggest that GLUD1 silencing is significantly associated with HCC development, and LASP1 and SYVN1 mediate the inhibition of GLUD1 in HCC, especially in HBV-related tumors.

4.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613308

ABSTRACT

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

5.
Kaohsiung J Med Sci ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647095

ABSTRACT

We previously found that the relative abundance of Bifidobacterium was increased after chemotherapy; however, the role of Bifidobacterium longum in chemotherapeutic drug resistance in ovarian cancer (OVC) remains unclear. This study aimed to understand the potential effects and mechanism of B. longum extracellular vesicles (B. longum-EVs) on carboplatin (CBP) resistance in OVC. Eight normal and 11 ovarian tissues were collected and the expression of B. longum genomic DNA and its association with acquired CBP resistance in OVC patients was determined. After isolating EVs by ultracentrifugation from B. longum (ATCC 15707), CBP-resistant A2780 cells were treated with PBS, CBP, B. longum-EVs, or CBP + B. longum-EVs, and subsequently analyzed by CCK-8, Edu staining, Annexin V/PI double staining, wound healing, and Transwell assays to detect cell viability, proliferation, apoptosis, migration, and invasion, respectively. MRP1, ATP7A, ATP7B, and p53 expression as well as p53 phosphorylation were measured by western blot analysis. S15A mutation of p53 was assessed to examine the potential role of p53 Ser15 phosphorylation in CBP-resistant OVC. B. longum levels were elevated and positively associated with CBP resistance in OVC patients. Only high concentrations of B. longum-EVs attenuated A2780 cell proliferation, apoptosis, migration, and invasion. B. longum-EVs exposure significantly enhanced the sensitivity of CBP-resistant A2780 cells to CBP and decreased the expression of drug resistance-related proteins. The effect of B. longum-EVs on reversing CBP resistance was completely inhibited by S15A mutation of p53. B. longum-EVs enhanced the sensitivity of OVC cells to CBP through p53 phosphorylation on Ser15.

6.
Magn Reson Med ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651648

ABSTRACT

PURPOSE: Gene therapy using adeno-associated virus (AAV) vector-mediated gene delivery has undergone substantial growth in recent years with promising results in both preclinical and clinical studies, as well as emerging regulatory approval. However, the inability to quantify the efficacy of gene therapy from cellular delivery of gene-editing technology to specific functional outcomes is an obstacle for efficient development of gene therapy treatments. Building on prior works that used the CEST reporter gene lysine rich protein, we hypothesized that AAV viral capsids may generate endogenous CEST contrast from an abundance of surface lysine residues. METHODS: NMR experiments were performed on isolated solutions of AAV serotypes 1-9 on a Bruker 800-MHz vertical scanner. In vitro experiments were performed for testing of CEST-NMR contrast of AAV2 capsids under varying pH, density, biological transduction stage, and across multiple serotypes and mixed biological media. Reverse transcriptase-polymerase chain reaction was used to quantify virus concentration. Subsequent experiments at 7 T optimized CEST saturation schemes for AAV contrast detection and detected AAV2 particles encapsulated in a biocompatible hydrogel administered in the hind limb of mice. RESULTS: CEST-NMR experiments revealed CEST contrast up to 52% for AAV2 viral capsids between 0.6 and 0.8 ppm. CEST contrast generated by AAV2 demonstrated high levels of CEST contrast across a variety of chemical environments, concentrations, and saturation schemes. AAV2 CEST contrast displayed significant positive correlations with capsid density (R2 > 0.99, p < 0.001), pH (R2 = 0.97, p = 0.01), and viral titer per cell count (R2 = 0.92, p < 0.001). Transition to a preclinical field strength yielded up to 11.8% CEST contrast following optimization of saturation parameters. In vivo detection revealed statistically significant molecular contrast between viral and empty hydrogels using both mean values (4.67 ± 0.75% AAV2 vs. 3.47 ± 0.87% empty hydrogel, p = 0.02) and quantile analysis. CONCLUSION: AAV2 viral capsids exhibit strong capacity as an endogenous CEST contrast agent and can potentially be used for monitoring and evaluation of AAV vector-mediated gene therapy protocols.

7.
Environ Int ; 187: 108690, 2024 May.
Article in English | MEDLINE | ID: mdl-38685157

ABSTRACT

Bisphenol F (BPF), a substitute for bisphenol A (BPA), is ubiquitous existed in various environmental media. Exposure to BPF may promote non-alcoholic fatty liver disease (NAFLD), while the potential mechanism is still unknown. In current study, we used in vitro and in vivo model to evaluate its hepatotoxicity and molecular mechanism. Using multi-omics approach, we found that BPF exposure led to changes in hepatic transcriptome, metabolome and chromatin accessible regions that were enriched for binding sites of transcription factors in bZIP family. These alterations were enriched with pathways integral to the endoplasmic reticulum stress and NAFLD. These findings suggested that BPF exposure might reprogram the chromatin accessibility and enhancer landscape in the liver, with downstream effects on genes associated with endoplasmic reticulum stress and lipid metabolism, which relied on bZIP family transcription factors. Overall, our study describes comprehensive molecular alterations in hepatocytes after BPF exposure and provides new insights into the understanding of the hepatoxicity of BPF.


Subject(s)
Benzhydryl Compounds , Lipid Metabolism , Liver , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice , Transcriptome/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Endoplasmic Reticulum Stress/drug effects , Male , Humans , Multiomics
8.
J Transl Med ; 22(1): 397, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684996

ABSTRACT

BACKGROUND: Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS: A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS: Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION: Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.


Subject(s)
Artificial Intelligence , Diabetic Nephropathies , Kidney Glomerulus , Humans , Diabetic Nephropathies/pathology , Diabetic Nephropathies/classification , Kidney Glomerulus/pathology , Male , Female , Middle Aged , Neural Networks, Computer
10.
J Affect Disord ; 354: 500-508, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38484883

ABSTRACT

BACKGROUND: The dynamic and hierarchical nature of the functional brain network. The neural dynamical systems tend to converge to multiple attractors (stable fixed points or dynamical states) in long run. Little is known about how the changes in this brain dynamic "long-term" behavior of the connectivity flow of brain network in generalized anxiety disorder (GAD). METHODS: This study recruited 92 patients with GAD and 77 healthy controls (HC). We applied a reachable probability approach combining a Non-homogeneous Markov model with transition probability to quantify all possible connectivity flows and the hierarchical structure of brain functional systems at the dynamic level and the stationary probability vector (10-step transition probabilities) to describe the steady state of the system in the long run. A random forest algorithm was conducted to predict the severity of anxiety. RESULTS: The dynamic functional patterns in distributed brain networks had larger possibility to converge in bilateral thalamus, posterior cingulate cortex (PCC), right superior occipital gyrus (SOG) and smaller possibility to converge in bilateral superior temporal gyrus (STG) and right parahippocampal gyrus (PHG) in patients with GAD compared to HC. The abnormal transition probability pattern could predict anxiety severity in patients with GAD. LIMITATIONS: Small samples and subjects taking medications may have influenced our results. Future studies are expected to rule out the potential confounding effects. CONCLUSION: Our results have revealed abnormal dynamic neural communication and integration in emotion regulation in patients with GAD, which give new insights to understand the dynamics of brain function of patients with GAD.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Anxiety Disorders/psychology , Brain Mapping/methods , Temporal Lobe
11.
J Thorac Oncol ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38460751

ABSTRACT

INTRODUCTION: Extensive-stage SCLC (ES-SCLC) prognosis remains poor. The phase 3 RATIONALE-312 study aimed to evaluate the efficacy and safety of tislelizumab plus chemotherapy as first-line treatment for ES-SCLC. METHODS: RATIONALE-312 is a randomized, double-blind, placebo-controlled trial, conducted in the People's Republic of China. Eligible patients with previously untreated ES-SCLC were randomized 1:1 to receive four cycles of tislelizumab 200 mg or placebo, with etoposide plus carboplatin or cisplatin intravenously every 3 weeks, followed by tislelizumab 200 mg or placebo as maintenance. The primary end point was overall survival (OS). Secondary end points included progression-free survival and safety. RESULTS: Between July 22, 2019 and April 21, 2021, 457 patients were randomized to tislelizumab (n = 227) or placebo (n = 230), plus chemotherapy. Baseline demographics were generally balanced between arms. At the data cutoff (April 19, 2023), the median study follow-up was 14.2 months (interquartile range: 8.6-25.3). Tislelizumab plus chemotherapy exhibited a statistically significant OS benefit versus placebo plus chemotherapy (stratified hazard ratio = 0.75 [95% confidence interval (CI): 0.61-0.93]; one-sided p = 0.0040; median: 15.5 [95% CI: 13.5-17.1] versus 13.5 mo [95% CI: 12.1-14.9], respectively). Progression-free survival was significantly improved in the tislelizumab versus placebo arm (stratified hazard ratio = 0.64 [95% CI: 0.52-0.78]; p < 0.0001; median: 4.7 [95% CI: 4.3-5.5] versus 4.3 mo [95% CI: 4.2-4.4], respectively). Grade greater than or equal to 3 treatment-related adverse events were reported in 86% of patients in each treatment arm and were mostly hematologic. CONCLUSIONS: Tislelizumab plus chemotherapy exhibited statistically significant clinical benefit and manageable safety compared with placebo plus chemotherapy as first-line treatment in patients with advanced ES-SCLC.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124084, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38442615

ABSTRACT

Peroxynitrite (ONOO-) is a highly reactive oxygen species that plays a critical role in many physiological and pathological processes of cell function. This study aimed to propose a ratiometric fluorescent probe BDHCA derived from coumarin for determining the ONOO- level. ONOO- could specifically induce oxidative cleavage of the conjugated C = C double bond in probe BDHCA, providing a fluorescent ratiometric output. The response of probe BDHCA to ONOO- was selective, fast, and highly sensitive, with a detection limit of 50.3 nM. Biological imaging experiments suggested that probe BDHCA could be used to image ONOO- in living RAW264.7 cells and zebrafish.


Subject(s)
Fluorescent Dyes , Zebrafish , Mice , Animals , Fluorescent Dyes/chemistry , Peroxynitrous Acid , Oxidative Stress , RAW 264.7 Cells
13.
Front Plant Sci ; 15: 1310346, 2024.
Article in English | MEDLINE | ID: mdl-38444537

ABSTRACT

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

14.
J Cell Physiol ; 239(5): e31213, 2024 May.
Article in English | MEDLINE | ID: mdl-38308641

ABSTRACT

Recent studies have shown that nucleophagy can mitigate DNA damage by selectively degrading nuclear components protruding from the nucleus. However, little is known about the role of nucleophagy in neurons after spinal cord injury (SCI). Western blot analysis and immunofluorescence were performed to evaluate the nucleophagy after nuclear DNA damage and leakage in SCI neurons in vivo and NSC34 expression in primary neurons cultured with oxygen-glucose deprivation (OGD) in vitro, as well as the interaction and colocalization of autophagy protein LC3 with nuclear lamina protein Lamin B1. The effect of UBC9, a Small ubiquitin-related modifier (SUMO) E2 ligase, on Lamin B1 SUMOylation and nucleophagy was examined by siRNA transfection or 2-D08 (a small-molecule inhibitor of UBC9), immunoprecipitation, and immunofluorescence. In SCI and OGD injured NSC34 or primary cultured neurons, neuronal nuclear DNA damage induced the SUMOylation of Lamin B1, which was required by the nuclear Lamina accumulation of UBC9. Furthermore, LC3/Atg8, an autophagy-related protein, directly bound to SUMOylated Lamin B1, and delivered Lamin B1 to the lysosome. Knockdown or suppression of UBC9 with siRNA or 2-D08 inhibited SUMOylation of Lamin B1 and subsequent nucleophagy and protected against neuronal death. Upon neuronal DNA damage and leakage after SCI, SUMOylation of Lamin B1 is induced by nuclear Lamina accumulation of UBC9. Furthermore, it promotes LC3-Lamin B1 interaction to trigger nucleophagy that protects against neuronal DNA damage.


Subject(s)
Autophagy , DNA Damage , Lamin Type B , Neurons , Spinal Cord Injuries , Sumoylation , Ubiquitin-Conjugating Enzymes , Lamin Type B/metabolism , Lamin Type B/genetics , Animals , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Cell Nucleus/metabolism , Rats , Mice , Cells, Cultured
15.
Cancer Commun (Lond) ; 44(4): 455-468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421881

ABSTRACT

BACKGROUND: The initial phase II stuty (NCT03215693) demonstrated that ensartinib has shown clinical activity in patients with advanced crizotinib-refractory, anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Herein, we reported the updated data on overall survival (OS) and molecular profiling from the initial phase II study. METHODS: In this study, 180 patients received 225 mg of ensartinib orally once daily until disease progression, death or withdrawal. OS was estimated by Kaplan‒Meier methods with two-sided 95% confidence intervals (CIs). Next-generation sequencing was employed to explore prognostic biomarkers based on plasma samples collected at baseline and after initiating ensartinib. Circulating tumor DNA (ctDNA) was detected to dynamically monitor the genomic alternations during treatment and indicate the existence of molecular residual disease, facilitating improvement of clinical management. RESULTS: At the data cut-off date (August 31, 2022), with a median follow-up time of 53.2 months, 97 of 180 (53.9%) patients had died. The median OS was 42.8 months (95% CI: 29.3-53.2 months). A total of 333 plasma samples from 168 patients were included for ctDNA analysis. An inferior OS correlated significantly with baseline ALK or tumor protein 53 (TP53) mutation. In addition, patients with concurrent TP53 mutations had shorter OS than those without concurrent TP53 mutations. High ctDNA levels evaluated by variant allele frequency (VAF) and haploid genome equivalents per milliliter of plasma (hGE/mL) at baseline were associated with poor OS. Additionally, patients with ctDNA clearance at 6 weeks and slow ascent growth had dramatically longer OS than those with ctDNA residual and fast ascent growth, respectively. Furthermore, patients who had a lower tumor burden, as evaluated by the diameter of target lesions, had a longer OS. Multivariate Cox regression analysis further uncovered the independent prognostic values of bone metastases, higher hGE, and elevated ALK mutation abundance at 6 weeks. CONCLUSION: Ensartinib led to a favorable OS in patients with advanced, crizotinib-resistant, and ALK-positive NSCLC. Quantification of ctDNA levels also provided valuable prognostic information for risk stratification.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Crizotinib , Lung Neoplasms/genetics , Neoplasm Proteins , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridazines/therapeutic use , Drug Resistance, Neoplasm/genetics
16.
Mol Cancer Ther ; 23(5): 733-742, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38346938

ABSTRACT

Immune checkpoint inhibitors (ICI) have displayed impressive clinical efficacy in the context of non-small cell lung cancer (NSCLC). However, most patients do not achieve long-term survival. Minimally invasive collected samples are attracting significant interest as new fields of biomarker study, and metabolomics is one of these growing fields. We concentrated on the augmented value of the metabolomic profile in differentiating long-term survival from short-term survival in patients with NSCLC subjected to ICIs. We prospectively recruited 97 patients with stage IV NSCLC who were treated with anti-PD-1 inhibitor, including patients treated with monoimmunotherapy as second-line treatment (Cohort 1), and patients treated with combination immunotherapy as first-line treatment (Cohort 2). Each cohort was divided into long-term and short-term survival groups. All blood samples were collected before beginning immunotherapy. Serum metabolomic profiling was performed by UHPLC-Q-TOF MS analysis. Pareto-scaled principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis were performed. In Cohort 1, the mPFS and mOS of long-survival patients are 27.05 and NR months, respectively, and those of short-survival patients are 2.79 and 10.59 months. In Cohort 2, the mPFS and mOS of long-survival patients are 27.35 and NR months, respectively, and those of short-survival patients are 3.77 and 12.17 months. A total of 41 unique metabolites in Cohort 1 and 47 in Cohort 2 were screened. In Cohorts 1 and 2, there are 6 differential metabolites each that are significantly associated with both progression-free survival and overall survival. The AUC values for all groups ranged from 0.73 to 0.95. In cohort 1, the top 3 enriched KEGG pathways, as determined through significant different metabolic pathway analysis, were primary bile acid biosynthesis, African trypanosomiasis, and choline metabolism in cancer. In Cohort 2, the top 3 enriched KEGG pathways were the citrate cycle (TCA cycle), PPAR signaling pathway, and primary bile acid biosynthesis. The primary bile acid synthesis pathway had significant differences in the long-term and short-term survival groups in both Cohorts 1 and 2. Our study suggests that peripheral blood metabolomic analysis is critical for identifying metabolic biomarkers and pathways responsible for the patients with NSCLC treated with ICIs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Female , Immunotherapy/methods , Middle Aged , Aged , Neoplasm Recurrence, Local/drug therapy , Biomarkers, Tumor/blood , Cohort Studies , Metabolomics/methods , Neoplasm Metastasis , Prospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Adult , Prognosis , Metabolome
17.
Insect Sci ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369384

ABSTRACT

Sri Lankan cassava mosaic virus (SLCMV) is a prominent causative agent of cassava mosaic disease in Asia and relies on the whitefly Bemisia tabaci cryptic complex for its transmission. However, the molecular mechanisms involved in SLCMV transmission by B. tabaci have yet to be understood. In this study, we identified an aminopeptidase N-like protein (BtAPN) in B. tabaci Asia II 1, an efficient vector of SLCMV, which is involved in the SLCMV transmission process. Through the use of glutathione S-transferase pull-down assay and LC-MS/MS analysis, we demonstrated the interaction between BtAPN and the coat protein (CP) of SLCMV. This interaction was further confirmed in vitro, and we observed an induction of BtAPN gene expression following SLCMV infection. By interfering with the function of BtAPN, the quantities of SLCMV were significantly reduced in various parts of B. tabaci Asia II 1, including the whole body, midgut, hemolymph, and primary salivary gland. Furthermore, we discovered that BtAPN is conserved in B. tabaci Middle East-Asia Minor 1 (MEAM1) and interacts with the CP of tomato yellow leaf curl virus (TYLCV), a begomovirus known to cause severe damage to tomato production. Blocking BtAPN with antibody led to a significant reduction in the quantities of TYLCV in whitefly whole body and organs/tissues. These results demonstrate that BtAPN plays a generic role in interacting with the CP of begomoviruses and positively regulates their acquisition by the whitefly.

20.
Lung Cancer ; 188: 107442, 2024 02.
Article in English | MEDLINE | ID: mdl-38171156

ABSTRACT

OBJECTIVES: NTRK fusions result in constitutively active oncogenic TRK proteins responsible for âˆ¼ 0.2 % of non-small cell lung cancer (NSCLC) cases. Approximately 40 % of patients with advanced NSCLC develop CNS metastases; therefore, treatments with intracranial (IC) efficacy are needed. In an integrated analysis of three phase I/II studies (ALKA-372-001: EudraCT 2012-000148-88; STARTRK-1: NCT02097810; STARTRK-2: NCT02568267), entrectinib, a potent, CNS-active, TRK inhibitor, demonstrated efficacy in patients with NTRK fusion-positive (fp) NSCLC (objective response rate [ORR]: 64.5 %; 2 August 2021 data cut-off). We present updated data for this cohort. MATERIALS AND METHODS: Eligible patients were ≥ 18 years with locally advanced/metastatic, NTRK-fp NSCLC with ≥ 12 months of follow-up. Tumor responses were assessed by blinded independent central review (BICR) per RECIST v1.1 at Week 4 and every eight weeks thereafter. Co-primary endpoints: ORR; duration of response (DoR). Secondary endpoints included progression-free survival (PFS); overall survival (OS); IC efficacy; safety. Enrolment cut-off: 2 July 2021; data cut-off: 2 August 2022. RESULTS: The efficacy-evaluable population included 51 patients with NTRK-fp NSCLC. Median age was 60.0 years (range 22-88); 20 patients (39.2 %) had investigator-assessed baseline CNS metastases. Median survival follow-up was 26.3 months (95 % CI 21.0-34.1). ORR was 62.7 % (95 % CI 48.1-75.9), with six complete and 26 partial responses. Median DoR and PFS were 27.3 months (95 % CI 19.9-30.9) and 28.0 months (95 % CI 15.7-30.4), respectively. Median OS was 41.5 months. In patients with BICR-assessed baseline CNS metastases, IC-ORR was 64.3 % (n = 9/14; 95 % CI 35.1-87.2), including seven complete responders, and IC-DoR was 55.7 months. In the safety-evaluable population (n = 55), most treatment-related adverse events were grade 1/2; no treatment-related deaths were reported. CONCLUSION: Entrectinib has continued to demonstrate deep and durable systemic and IC responses in patients with NTRK-fp NSCLC.


Subject(s)
Antineoplastic Agents , Benzamides , Carcinoma, Non-Small-Cell Lung , Central Nervous System Neoplasms , Lung Neoplasms , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/chemically induced , Antineoplastic Agents/therapeutic use , Indazoles , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/genetics , Protein Kinase Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...