Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724827

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Subject(s)
Bone Regeneration , Cell Differentiation , Dioxygenases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Rats, Sprague-Dawley , Skull , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Rats , Skull/pathology , Skull/metabolism , Female , Bone Regeneration/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Cell Proliferation/genetics , HEK293 Cells
2.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607259

ABSTRACT

Chemical pressure generated through ion doping into crystal lattices has been proven to be conducive to exploration of new matter, development of novel functionalities, and realization of unprecedented performances. However, studies are focusing on one-time doping, and there is a lack of both advanced investigations for multiple doping and sophisticated strategies to precisely and quantitatively track the gradual functionality evolution along with progressive chemical pressure implementation. Herein, high-valent Y3+ and equal-valent Mg2+ is successively doped to replace multiple Ca sites in Ca10.5(PO4)7:Eu2+. The luminescence evolution of Eu2+ serves as an optical probe, allowing step-by-step and atomic-level tracking of the site occupation of Y3+ and Mg2+, interassociation of Ca sites, and ultimately functionality improvement. The resulting Ca8MgY(PO4)7:Eu2+ displays a record-high relative sensitivity for optical thermometry. Utilization of the environment-sensitive emission of Eu2+ as a luminescent probe has offered a unique approach to monitoring structure-functionality evolution in vivo with atomic precision, which shall also be extended to optimization of other functionalities such as ferroelectricity, conductivity, thermoelectricity, and catalytic activity through precise control over atomic diffusion in other types of substances.

3.
Cell Prolif ; : e13607, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353178

ABSTRACT

To investigate the role and mechanism of FBLN1 in the osteogenic differentiation and bone regeneration by using umbilical cord mesenchymal stem cells (WJCMSCs). We found that FBLN1 promoted osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. It was showed that there was an m6 A methylation site in 3'UTR of FBLN1 mRNA, and the mutation of the m6 A site enhanced the stability of FBLN1 mRNA, subsequently fostering the FBLN1 enhanced osteogenic differentiation of WJCMSCs. YTHDF2 was identified as capable of recognizing and binding to the m6 A site, consequently inducing FBLN1 instability and repressed the osteogenic differentiation of WJCMSCs. Meanwhile, miR-615-3p negatively regulated FBLN1 by binding FBLN1 3'UTR and inhibited the osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. Then, we discovered miR-615-3p was found to regulate the functions of FBLN1 facilitated by YTHDF2 through an m6 A-miRNA regulation mechanism. We demonstrated that FBLN1 is critical for regulating the osteogenic differentiation potentials of WJCMSCs and have identified that miR615-3p mediated the decay of FBLN1 mRNA which facilitated by m6 A reading protein YTHDF2. This provided a novel m6 A-miRNA epigenetic regulatory pattern for MSC regulation and bone regeneration.

4.
Curr Stem Cell Res Ther ; 19(3): 417-425, 2024.
Article in English | MEDLINE | ID: mdl-37608663

ABSTRACT

OBJECTIVES: Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear. METHODS: Senescence was assessed using ß-galactosidase and Enzyme-linked immunosorbent assay (ELISA). Osteogenic differentiation potential of hPDLSCs was measured through Alkaline phosphatase (ALP) activity assay and Alizarin red detection, while gene expression levels were evaluated using western blot and RT-qPCR analysis. RESULTS: FBLN5 overexpression promoted the osteogenic differentiation and senescence of hPDLSCs. FBLN5 knockdown inhibited the osteogenic differentiation and senescence of hPDLSCs. Knockdown of PRDM9 decreased the expression of FBLN5 in hPDLSCs and inhibited senescence of hPDLSCs. Additionally, both FBLN5 and PRDM9 promoted the expression of phosphorylated p38 MAPK, Erk1/2 and JNK. The p38 MAPK pathway inhibitor SB203580 and the Erk1/2 pathway inhibitor PD98059 have the same effects on inhibiting the osteogenic differentiation and senescence of hPDLSCs. The JNK pathway inhibitor SP600125 reduced the senescence of hPDLSCs. CONCLUSION: FBLN5 promoted senescence and osteogenic differentiation of hPDLSCs via activation of the MAPK signaling pathway. FBLN5 was positively targeted by PRDM9, which also activated the MAPK signaling pathway.


Subject(s)
Osteogenesis , Periodontal Ligament , Humans , Osteogenesis/genetics , Cells, Cultured , Cell Differentiation , Stem Cells , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/pharmacology , Histone-Lysine N-Methyltransferase/metabolism
5.
Cell Prolif ; 57(4): e13578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37961996

ABSTRACT

Drug resistance is perhaps the greatest obstacle in improving outcomes for cancer patients, leading to recurrence, progression and metastasis of various cancers. Exploring the underlying mechanism worth further study. N6-methyladenosine (m6A) is the most common RNA modification found in eukaryotes, playing a vital role in RNA translation, transportation, stability, degradation, splicing and processing. Long noncoding RNA (lncRNA) refers to a group of transcripts that are longer than 200 nucleotides (nt) and typically lack the ability to code for proteins. LncRNA has been identified to play a significant role in regulating multiple aspects of tumour development and progression, including proliferation, metastasis, metabolism, and resistance to treatment. In recent years, a growing body of evidence has emerged, highlighting the crucial role of the interplay between m6A modification and lncRNA in determining the sensitivity of cancer cells to chemotherapeutic agents. In this review, we focus on the recent advancements in the interaction between m6A modification and lncRNA in the modulation of cancer drug resistance. Additionally, we aim to explore the underlying mechanisms involved in this process. The objective of this review is to provide valuable insights and suggest potential future directions for the reversal of chemoresistance in cancer.


Subject(s)
Adenine/analogs & derivatives , Neoplasms , RNA, Long Noncoding , Humans , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , Adenosine , Neoplasms/drug therapy , Neoplasms/genetics
6.
Front Oncol ; 13: 1265749, 2023.
Article in English | MEDLINE | ID: mdl-38074661

ABSTRACT

Background: Poorly differentiated non-small cell lung cancer (NSCLC) is characteristic of high rate of distant metastasis and late stages at diagnosis. Small intestine metastasis is a rare but severe complication of lung cancer with a high rate of mortality. However, there is currently a lack of genetic profile studies on the small intestine metastasis of lung cancer. Case presentations: We present 2 cases of male patients in their 60s with primary NSCLC of low differentiation, initially with no distant metastasis detected. Biopsy samples were obtained from the primary pulmonary lesions, and both patients received systematic radiotherapy (RT) and chemotherapy. However, both cases presented with abdominal pain and distension, and immunohistochemistry of small intestine biopsy samples obtained by endoscopy confirmed lung cancer metastasis. Next generation sequencing was used to explore the genetic profiles from the biopsy samples of both the primary pulmonary lesions and small intestine metastases. The correlated genes responsible for the small intestine metastasis from poorly differentiated NSCLC in these 2 patients included TP53, LRP1B, and FGFR2. The reports of small intestine metastasis from poorly differentiated NSCLC with the past 5 years were systematically reviewed and summarized subsequently. Conclusions: Poorly differentiated NSCLC with small intestine metastases, while rare, substantially impacts the prognosis and poses major challenges for diagnosis and treatment. Through comparisons of genetic profiles between patients and in the same patient before and after metastasis, we identified the mutations in genes such as TP53, LRP1B, and FGFR2, which were correlated with the occurrence and progression of poorly differentiated NSCLC, as well as its small intestinal metastasis. This discovery has the potential to guide clinicians in developing personalized treatment plans through the manipulation of targeted and radiation therapies.

7.
Int J Oral Sci ; 15(1): 48, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852994

ABSTRACT

Mesenchymal stem cell (MSC)-based therapy has emerged as a promising treatment for spinal cord injury (SCI), but improving the neurogenic potential of MSCs remains a challenge. Mixed lineage leukemia 1 (MLL1), an H3K4me3 methyltransferases, plays a critical role in regulating lineage-specific gene expression and influences neurogenesis. In this study, we investigated the role and mechanism of MLL1 in the neurogenesis of stem cells from apical papilla (SCAPs). We examined the expression of neural markers, and the nerve repair and regeneration ability of SCAPs using dynamic changes in neuron-like cells, immunofluorescence staining, and a SCI model. We employed a coimmunoprecipitation (Co-IP) assay, real-time RT-PCR, microarray analysis, and chromatin immunoprecipitation (ChIP) assay to investigate the molecular mechanism. The results showed that MLL1 knock-down increased the expression of neural markers, including neurogenic differentiation factor (NeuroD), neural cell adhesion molecule (NCAM), tyrosine hydroxylase (TH), ßIII-tubulin and Nestin, and promoted neuron-like cell formation in SCAPs. In vivo, a transplantation experiment showed that depletion of MLL 1 in SCAPs can restore motor function in a rat SCI model. MLL1 can combine with WD repeat domain 5 (WDR5) and WDR5 inhibit the expression of neural markers in SCAPs. MLL1 regulates Hairy and enhancer of split 1 (HES1) expression by directly binds to HES1 promoters via regulating H3K4me3 methylation by interacting with WDR5. Additionally, HES1 enhances the expression of neural markers in SCAPs. Our findings demonstrate that MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. These results provide a potential therapeutic target for promoting the recovery of motor function in SCI patients.


Subject(s)
Leukemia , Mesenchymal Stem Cells , Animals , Humans , Rats , Cell Differentiation , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/therapeutic use , Leukemia/drug therapy , Leukemia/metabolism , Neurogenesis , Stem Cells , Transcription Factor HES-1/metabolism
8.
J Oral Rehabil ; 50(12): 1487-1497, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574812

ABSTRACT

BACKGROUND: Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS: The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS: After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION: We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.


Subject(s)
Osteogenesis , RNA , Humans , Osteogenesis/genetics , RNA/metabolism , RNA/pharmacology , Cell Differentiation/genetics , Hypoxia/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer/pharmacology , Bone Marrow Cells/metabolism , Cells, Cultured
9.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445785

ABSTRACT

Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, ß-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, ß-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.


Subject(s)
Histones , Tubulin , Rats , Animals , Histones/metabolism , Nestin/genetics , Nestin/metabolism , Cell Differentiation , Tubulin/genetics , Tubulin/metabolism , Stem Cells/metabolism , Neurogenesis , Dental Papilla/metabolism , Cells, Cultured , Osteogenesis
10.
Stem Cells Int ; 2023: 8992284, 2023.
Article in English | MEDLINE | ID: mdl-37323630

ABSTRACT

Mesenchymal stem cells (MSCs) have been considered a potential method for the regeneration of tooth and maxillofacial bone defects based on the multidirectional differentiation characteristics of MSCs. miRNAs have been found to play a key role in the differentiation of MSCs. However, its effectiveness still needs to be improved, and its internal mechanism is still unclear. In the present study, our data discovered that the knockdown of miR-196b-5p promoted alkaline phosphatase (ALP) activity assay, mineralization in vitro, and expressions of osteo/odontogenic differentiation markers DSPP and OCN and enhanced in vivo osteo/odontogenic differentiation of stem cells of the apical papilla (SCAPs). Mechanistically, the results indicated that METTL3-dependent N6-methyladenosine (m6A) methylation inhibited miR-196b-5p maturation by the microprocessor protein DGCR8. Moreover, miR-196b-5p indirectly negatively regulates METTL3 in SCAPs. Then, METTL3 was found to strengthen the ALP activity assay, mineralization, and expressions of osteo/dentinogenic differentiation markers. Taken together, our findings highlight the critical roles of the METTL3-miR-196b-5p signaling axis in an m6A-dependent manner in osteo/odontogenic differentiation of SCAPs, identifying some potential targets for tooth and maxillofacial bone defects.

11.
IEEE Trans Pattern Anal Mach Intell ; 45(9): 11374-11381, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37015128

ABSTRACT

Dynamic neural networks can greatly reduce computation redundancy without compromising accuracy by adapting their structures based on the input. In this paper, we explore the robustness of dynamic neural networks against energy-oriented attacks targeted at reducing their efficiency. Specifically, we attack dynamic models with our novel algorithm GradMDM. GradMDM is a technique that adjusts the direction and the magnitude of the gradients to effectively find a small perturbation for each input, that will activate more computational units of dynamic models during inference. We evaluate GradMDM on multiple datasets and dynamic models, where it outperforms previous energy-oriented attack techniques, significantly increasing computation complexity while reducing the perceptibility of the perturbations https://github.com/lingengfoo/GradMDM.

12.
Postgrad Med J ; 99(1168): 63-68, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36856662

ABSTRACT

BACKGROUND: The associations between female infertility and epithelial ovarian cancer (EOC) or endometrial cancer (EC) have been reported in observational studies, but its causal relationship remains unknown. We intended to assess the causal effect of female infertility on EOCs and ECs using a two-sample Mendelian Randomization (MR) approach. METHODS: Large pooled genome-wide association study (GWAS) datasets for female infertility (6481 cases and 68 969 controls), EOC (25 509 cases and 40 941 controls), and EC (12 906 cases and 108 979 controls) were derived from public GWAS databases and published studies. The Inverse Variance Weighted method, Weighted Median method, MR-Egger regression, and MR-Pleiotropy Residual Sum and Outlier test were adopted for MR analyses. RESULTS: Our results suggested that genetically predicted infertility was positively associated with the risk of EOC (OR = 1.117, 95% CI = 1.003-1.245, P = .045), but did not find a causal relationship between infertility and EC (OR = 1.081, 95% CI = 0.954-1.224, P = .223). As to the reverse direction, our study did not obtain evidence from genetics that EOCs (OR = 0.974, 95% CI = 0.825-1.150, P = .755) and ECs (OR = 1.039, 95% CI = 0.917-1.177, P = .548) were associated with an increased risk of infertility. CONCLUSIONS: This large MR analysis supported a causal association between female infertility and increased risk of EOCs, but did not find a causal relationship between infertility and ECs.


Subject(s)
Endometrial Neoplasms , Infertility, Female , Female , Humans , Infertility, Female/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Endometrial Neoplasms/genetics , Databases, Factual , Polymorphism, Single Nucleotide
13.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835613

ABSTRACT

The characterization and evaluation of skin tissue structures are crucial for dermatological applications. Recently, Mueller matrix polarimetry and second harmonic generation microscopy have been widely used in skin tissue imaging due to their unique advantages. However, the features of layered skin tissue structures are too complicated to use a single imaging modality for achieving a comprehensive evaluation. In this study, we propose a dual-modality imaging method combining Mueller matrix polarimetry and second harmonic generation microscopy for quantitative characterization of skin tissue structures. It is demonstrated that the dual-modality method can well divide the mouse tail skin tissue specimens' images into three layers of stratum corneum, epidermis, and dermis. Then, to quantitatively analyze the structural features of different skin layers, the gray level co-occurrence matrix is adopted to provide various evaluating parameters after the image segmentations. Finally, to quantitatively measure the structural differences between damaged and normal skin areas, an index named Q-Health is defined based on cosine similarity and the gray-level co-occurrence matrix parameters of imaging results. The experiments confirm the effectiveness of the dual-modality imaging parameters for skin tissue structure discrimination and assessment. It shows the potential of the proposed method for dermatological practices and lays the foundation for further, in-depth evaluation of the health status of human skin.


Subject(s)
Collagen , Second Harmonic Generation Microscopy , Humans , Animals , Mice , Collagen/chemistry , Skin , Diagnostic Imaging , Spectrum Analysis
14.
Int J Oral Sci ; 15(1): 6, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36631441

ABSTRACT

The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the "m6A site methylation stoichiometry" of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3'-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.


Subject(s)
Bone Marrow , Dental Implants , Diabetes Mellitus, Type 2 , Mesenchymal Stem Cells , RNA Processing, Post-Transcriptional , Humans , Bone Marrow/metabolism , Bone Morphogenetic Proteins/metabolism , Dental Implants/adverse effects , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Growth Differentiation Factors/metabolism , Mesenchymal Stem Cells/metabolism , RNA/chemistry , RNA/metabolism
15.
IEEE Trans Vis Comput Graph ; 29(2): 1438-1449, 2023 02.
Article in English | MEDLINE | ID: mdl-34606458

ABSTRACT

Recently, we have witnessed a boom in applications for 3D talking face generation. However, most existing 3D face generation methods can only generate 3D faces with a static head pose, which is inconsistent with how humans perceive faces. Only a few articles focus on head pose generation, but even these ignore the attribute of personality. In this article, we propose a unified audio-driven approach to endow 3D talking faces with personalized pose dynamics. To achieve this goal, we establish an original person-specific dataset, providing corresponding head poses and face shapes for each video. Our framework is composed of two separate modules: PoseGAN and PGFace. Given an input audio, PoseGAN first produces a head pose sequence for the 3D head, and then, PGFace utilizes the audio and pose information to generate natural face models. With the combination of these two parts, a 3D talking head with dynamic head movement can be constructed. Experimental evidence indicates that our method can generate person-specific head pose sequences that are in sync with the input audio and that best match with the human experience of talking heads.


Subject(s)
Face , Imaging, Three-Dimensional , Humans , Computer Graphics , Posture
16.
Article in English | MEDLINE | ID: mdl-36441881

ABSTRACT

Federated learning has shown its unique advantages in many different tasks, including brain image analysis. It provides a new way to train deep learning models while protecting the privacy of medical image data from multiple sites. However, previous studies suggest that domain shift across different sites may influence the performance of federated models. As a solution, we propose a gradient matching federated domain adaptation (GM-FedDA) method for brain image classification, aiming to reduce domain discrepancy with the assistance of a public image dataset and train robust local federated models for target sites. It mainly includes two stages: 1) pretraining stage; we propose a one-common-source adversarial domain adaptation (OCS-ADA) strategy, i.e., adopting ADA with gradient matching loss to pretrain encoders for reducing domain shift at each target site (private data) with the assistance of a common source domain (public data) and 2) fine-tuning stage; we develop a gradient matching federated (GM-Fed) fine-tuning method for updating local federated models pretrained with the OCS-ADA strategy, i.e., pushing the optimization direction of a local federated model toward its specific local minimum by minimizing gradient matching loss between sites. Using fully connected networks as local models, we validate our method with the diagnostic classification tasks of schizophrenia and major depressive disorder based on multisite resting-state functional MRI (fMRI), respectively. Results show that the proposed GM-FedDA method outperforms other commonly used methods, suggesting the potential of our method in brain imaging analysis and other fields, which need to utilize multisite data while preserving data privacy.

17.
Front Immunol ; 13: 1019248, 2022.
Article in English | MEDLINE | ID: mdl-36389828

ABSTRACT

The inflammatory response plays critical important role in tissue hemostasis. Our previous study showed insulin-binding protein-5 (IGFBP5) could enhance the regeneration of tissue defect under inflammation condition, but the function of IGFBP5 in controlling inflammation and regulating immune responses remains unclear. In present study, we studied the regulatory effect of IGFBP5 on T cell immune response in vitro, and the maintenance of Th17/Treg balance in vivo by using dextran sulfate sodium salt (DSS)-induced colitis in mice. The results showed that IGFBP5 inhibited the differentiation of CD4+ T cells into Th17 subset while promoted its differentiation into Treg subsets. Further results of animal experiments demonstrated that recombinant IGFBP5 reversed the imbalance of Th17/Treg and alleviated the severity of DSS-induced colitis. The percentage of Th17 cells decreased and the percentage of Treg cells increased in the inflamed colon tissue and mesenteric lymph nodes of mice with colitis after IGFBP5 treatment. Besides, pro-inflammatory cytokines such as TNF-α, IL-1ß and IFN-γ in serum were suppressed after the treatment of IGFBP5. Moreover, the function of IGFBP5 in regulating Th17/Treg balance could be inhibited by the inhibitors of ERK or JNK pathway. In conclusion, all these data showed that IGFBP5 could regulate Th17/Treg balance via ERK or JNK pathways. The findings of our study provide a theoretical basis for the application of IGFBP5 in inflammatory diseases.


Subject(s)
Colitis , Th17 Cells , Animals , Mice , Carrier Proteins/pharmacology , Dextran Sulfate , Inflammation , Insulin/pharmacology , T-Lymphocytes, Regulatory
18.
Epilepsia ; 63(12): 3192-3203, 2022 12.
Article in English | MEDLINE | ID: mdl-36196770

ABSTRACT

OBJECTIVE: Cortical tremor/myoclonus is the hallmark feature of benign adult familial myoclonic epilepsy (BAFME), the mechanism of which remains elusive. A hypothesis is that a defective control in the preexisting cerebellar-motor loop drives cortical tremor. Meanwhile, the basal ganglia system might also participate in BAFME. This study aimed to discover the structural basis of cortical tremor/myoclonus in BAFME. METHODS: Nineteen patients with BAFME type 1 (BAFME1) and 30 matched healthy controls underwent T1-weighted and diffusion tensor imaging scans. FreeSurfer and spatially unbiased infratentorial template (SUIT) toolboxes were utilized to assess the motor cortex and the cerebellum. Probabilistic tractography was generated for two fibers to test the hypothesis: the dentato-thalamo-(M1) (primary motor cortex) and globus pallidus internus (GPi)-thalamic projections. Average fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) of each tract were extracted. RESULTS: Cerebellar atrophy and dentate nucleus alteration were observed in the patients. In addition, patients with BAFME1 exhibited reduced AD and FA in the left and right dentato-thalamo-M1 nondecussating fibers, respectively false discovery rate (FDR) correction q < .05. Cerebellar projections showed negative correlations with somatosensory-evoked potential P25-N33 amplitude and were independent of disease duration and medication. BAFME1 patients also had increased FA and decreased MD in the left GPi-thalamic projection. Higher FA and lower RD in the right GPi-thalamic projection were also observed (FDR q < .05). SIGNIFICANCE: The present findings support the hypothesis that the cerebello-thalamo-M1 loop might be the structural basis of cortical tremor in BAFME1. The basal ganglia system also participates in BAFME1 and probably serves a regulatory role.


Subject(s)
Diffusion Tensor Imaging , Epilepsies, Myoclonic , Humans , Adult , Epilepsies, Myoclonic/diagnostic imaging
19.
Biosensors (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36290919

ABSTRACT

In this paper, we propose a smartphone-based biosensor for detecting human total hemoglobin concentration in vivo with high accuracy. Compared to the existing biosensors used to measure hemoglobin concentration, the smartphone-based sensor utilizes the camera, memory, and computing power of the phone. Thus, the cost is largely reduced. Compared to existing smartphone-based sensors, we developed a highly integrated multi-wavelength LED module and a specially designed phone fixture to reduce spatial errors and motion artifacts, respectively. In addition, we embedded a new algorithm into our smartphone-based sensor to improve the measurement accuracy; an L*a*b* color space transformation and the "a" parameter were used to perform the final quantification. We collected 24 blood samples from normal and anemic populations. The adjusted R2 of the prediction results obtained from the multiple linear regression method reached 0.880, and the RMSE reached 9.04, which met the accuracy requirements of non-invasive detection of hemoglobin concentration.


Subject(s)
Biosensing Techniques , Smartphone , Humans , Biosensing Techniques/methods , Motion , Algorithms , Hemoglobins
20.
Cell Prolif ; 55(11): e13309, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35811348

ABSTRACT

OBJECTIVES: Bone remodelling is necessary to repair old and impaired bone caused by aging and its effects. Injury in the process of bone remodelling generally leads to the development of various bone diseases. Energy metabolism plays crucial roles in bone cell formation and function, the disorder of which will disrupt the balance between bone formation and bone resorption. MATERIALS AND METHODS: Here, we review the intrinsic interactions between bone remodelling and energy metabolism and the role of the Wnt signalling pathway. RESULTS: We found a close interplay between metabolic pathways and bone homeostasis, demonstrating that bone plays an important role in the regulation of energy balance. We also discovered that Wnt signalling is associated with multiple biological processes regulating energy metabolism in bone cells. CONCLUSIONS: Thus, targeted regulation of Wnt signalling and the recovery of the energy metabolism function of bone cells are key means for the treatment of metabolic bone diseases.


Subject(s)
Bone Resorption , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/physiology , Bone Remodeling , Osteogenesis , Bone Resorption/metabolism , Energy Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...