Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748790

ABSTRACT

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

2.
J Anim Sci Biotechnol ; 15(1): 78, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755656

ABSTRACT

BACKGROUND: Comprehending the patterns of alteration in boar semen quality and identifying effective nutritional interventions are crucial for enhancing the productivity of commercial pig systems. This study aimed to examine the alteration in semen quality in boars, and assess the impact of protocatechuic acid (PCA) on semen quality during the phase of declining semen quality. METHODS: In Exp. 1, a total of 38 Pig Improvement Company (PIC) boars were selected and their semen quality data were recorded from the age of 9 to 37 months. In Exp. 2, 18 PIC boars (28 months old) were randomly assigned into three groups (n = 6) and fed a basal diet, a basal diet containing 500 or 1,000 mg/kg PCA, respectively. The experiment lasted for 12 weeks. RESULTS: The semen volume, concentration, and total number of spermatozoa in boars exhibited an increase from 9 to 19 months old and showed a significant linear decreased trend in 28, 24, and 22 months old. Sperm motility displayed an upward trajectory, reaching its peak at 20 months of age, and showed a significant linear decreased trend at 20 months old. Dietary supplementation of PCA demonstrated an effect to mitigate the decrease in semen volume, concentration of spermatozoa, total number of spermatozoa (P > 0.05), and significantly increased the sperm motility (P < 0.05). Moreover, supplementation of 1,000 mg/kg PCA significantly increased the sperm viability (P < 0.05). Analysis on cellular signaling pathways revealed that PCA restored serum testosterone levels and alleviated oxidative damage by upregulating the expression of HO-1, SOD2, and NQO1 in testicular stromal cells. Notably, PCA can enhance phosphorylation by selectively binding to AMP-activated protein kinase (AMPK) protein, thereby improving sperm mitochondrial function and augmenting sperm motility via PGC-1/Nrf1. CONCLUSIONS: These data elucidated the pattern of semen quality variation in boars within the age range of 9 to 37 months old, and PCA has the potential to be a natural antioxidant to enhance sperm quality through modulation of the AMPK/PGC-1/Nrf1 signaling pathway.

3.
Sci Robot ; 9(90): eadi8666, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748782

ABSTRACT

Garnering inspiration from biological compound eyes, artificial vision systems boasting a vivid range of diverse visual functional traits have come to the fore recently. However, most of these artificial systems rely on transformable electronics, which suffer from the complexity and constrained geometry of global deformation, as well as potential mismatches between optical and detector units. Here, we present a unique pinhole compound eye that combines a three-dimensionally printed honeycomb optical structure with a hemispherical, all-solid-state, high-density perovskite nanowire photodetector array. The lens-free pinhole structure can be designed and fabricated with an arbitrary layout to match the underlying image sensor. Optical simulations and imaging results matched well with each other and substantiated the key characteristics and capabilities of our system, which include an ultrawide field of view, accurate target positioning, and motion tracking function. We further demonstrate the potential of our unique compound eye for advanced robotic vision by successfully completing a moving target tracking mission.

4.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38573228

ABSTRACT

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Subject(s)
Diet, High-Fat , Mitochondria , Pregnancy Outcome , Resveratrol , Uterus , Animals , Resveratrol/pharmacology , Female , Pregnancy , Mice , Diet, High-Fat/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Uterus/metabolism , Uterus/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism
5.
J Food Sci ; 89(4): 2249-2260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477648

ABSTRACT

The deliberate pork adulteration with lymph nodes is a common adulteration phenomenon, and it poses a serious threat to public health and food safety. An untargeted metabolomics and lipidomics approach based on ultrahigh performance liquid chromatography coupled with linear ion trap quadrupole-Orbitrap high resolution mass spectrometry (MS) was used to distinguish lymph nodes from minced pork. The principal component analysis and orthogonal projection to latent structures discriminant analysis models were established with the good of fitness and predictivity. The results showed that there were significant differences in metabolites and lipids between lymph nodes and pork. A total of 16 significantly differentiated metabolites were identified, of which 1-palmitoylglycerophosphocholine, 12,13-dihydroxy-9-octadecenoic acid, and prostaglandin E2 (PGE2) were positively correlated with lymph node content and were identified as potential markers of lymph nodes. These three markers were combined to create a binary logistic regression model, and a combined-factor exceeding 0.75 was ultimately identified as a marker for pork adulteration with lymph nodes. The desorption electrospray ionization-MS images showed that PGE2 had a higher relative abundance in the lymph node region than in adjacent non-lymph node regions, indicating that PGE2 was a marker that contributed significantly for identifying lymph nodes adulteration into pork. Our results provide a theoretical basis for identifying lymph node adulteration, which will contribute to combating fraud in the meat industry.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Chromatography, High Pressure Liquid/methods , Lipidomics , Chromatography, Liquid/methods , Metabolomics/methods
6.
Environ Sci Technol ; 58(11): 5153-5161, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456428

ABSTRACT

Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.


Subject(s)
Acetone , Cobalt , Oxides , Toluene , Oxidation-Reduction , Catalysis , Toluene/analysis , Toluene/chemistry
7.
ACS Nano ; 18(12): 8557-8570, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38482819

ABSTRACT

Perovskite light-emitting diodes (LEDs) have emerged as one of the most propitious candidates for next-generation lighting and displays, with the highest external quantum efficiency (EQE) of perovskite LEDs already surpassing the 20% milestone. However, the further development of perovskite LEDs primarily relies on addressing operational instability issues. This Perspective examines some of the key factors that impact the lifetime of perovskite LED devices and some representative reports on recent advancements aimed at improving the lifetime. Our analysis underscores the significance of "nano" strategies in achieving long-term stable perovskite LEDs. Significant efforts must be directed toward proper device encapsulation, perovskite material passivation, interfacial treatment to address environment-induced material instability, bias-induced phase separation, and ion migration issues.

8.
Adv Mater ; : e2311106, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388858

ABSTRACT

Electrochemical biosensors have emerged as one of the promising tools for tracking human body physiological dynamics via non-invasive perspiration analysis. However, it remains a key challenge to integrate multiplexed sensors in a highly controllable and reproducible manner to achieve long-term reliable biosensing, especially on flexible platforms. Herein, a fully inkjet printed and integrated multiplexed biosensing patch with remarkably high stability and sensitivity is reported for the first time. These desirable characteristics are enabled by the unique interpenetrating interface design and precise control over active materials mass loading, owing to the optimized ink formulations and droplet-assisted printing processes. The sensors deliver sensitivities of 313.28 µA mm-1 cm-2 for glucose and 0.87 µA mm-1 cm-2 for alcohol sensing with minimal drift over 30 h, which are among the best in the literature. The integrated patch can be used for reliable and wireless diet monitoring or medical intervention via epidermal analysis and would inspire the advances of wearable devices for intelligent healthcare applications.

9.
ACS Appl Mater Interfaces ; 16(4): 5028-5035, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235664

ABSTRACT

Artificial vision systems (AVS) have potential applications in visual prosthetics and artificially intelligent robotics, and they require a preprocessor and a processor to mimic human vision. Halide perovskite (HP) is a promising preprocessor and processor due to its excellent photoresponse, ubiquitous charge migration pathways, and innate hysteresis. However, the material instability associated with HP thin films hinders their utilization in physical AVSs. Herein, we have developed ultrahigh-density arrays of robust HP nanowires (NWs) rooted in a porous alumina membrane (PAM) as the active layer for an AVS. The NW devices exhibit gradual photocurrent change, responding to changes in light pulse duration, intensity, and number, and allow contrast enhancement of visual inputs with a device lifetime of over 5 months. The NW-based processor possesses temporally stable conductance states with retention >105 s and jitter <10%. The physical AVS demonstrated 100% accuracy in recognizing different shapes, establishing HP as a reliable material for neuromorphic vision systems.

10.
Small Methods ; 8(2): e2301632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38095455
11.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37931145

ABSTRACT

In recent years, more frequent and prolonged periods of high ambient temperature in summer compromised poultry production worldwide. This study was conducted to investigate the effects of compound bioengineering protein (CBP) on the growth performance and intestinal health of broilers under high ambient temperatures. A total of 400 one-day-old Arbor Acres birds were randomly distributed into five treatment groups: control group (CON) with basal diet, or a basal diet supplemented with CBP 250, 500, 750, and 1,000 mg/kg, respectively. The trial lasted 42 d, all birds were raised at normal ambient temperature for the first 21 d and then subjected to the artificial hyperthermal condition with the temperature at 32 ±â€…2 °C and relative humidity at 60 ±â€…5% during 22 to 42 d. Dietary CBP supplementation improved the growth performance and serum antioxidant capacity (total antioxidant capacity and total superoxide dismutase), and decreased serum cortisol, aminotransferase, and alkaline phosphatase of broilers. Dietary CBP inclusion enhanced intestinal barrier function by promoting intestinal morphology and reducing intestinal permeability (diamine oxidase), increased the intestinal antioxidant capacity by elevating glutathione peroxidase activity in the duodenum, reducing malondialdehyde content in the jejunum. Dietary CBP supplementation also alleviated intestinal inflammation by decreasing interleukin (IL)-6 content in the jejunum and ileum, promoting IL-10 levels in the ileum, down-regulating the mRNA abundance of intestinal inflammatory-related genes interferon-gamma (IFN-γ) in the duodenum and up-regulating IL-10 in the jejunum. Additionally, CBP increased the population of total bacteria and Lactobacillus in cecal chyme. Collectively, dietary CBP inclusion exerts beneficial effects on the broilers, which are reflected by enhancing antioxidant capacity, promoting intestinal barrier function, ameliorating intestinal immune response, and regulating intestinal bacteria, thus improving the growth performance of broilers under high-temperature conditions. In general, 750 mg/kg CBP supplementation is more effective.


Extreme high ambient temperature in summer occurs frequently around the world, which causes severe economic losses in the broiler industry, and impairs food safety. Improving the high-temperature resistance of broilers is beneficial to the sustainable development of the broiler industry. Dietary supplementation of anti-stress additives is an effective way to prevent high-temperature stress in broilers. Antimicrobial peptides are excellent anti-stress additives that exhibit multiple biological functions, such as against microbial infection, improving antioxidant capacity and immune function, and perfecting the intestinal health of broilers. In the present study, we added the compound bioengineering protein (CBP) (two bioengineering proteins containing functional fragments of antimicrobial peptides) in diets to investigate the potential protective effects of CBP for broilers under high temperatures. Our present results indicate that dietary CBP supplementation enhances the growth performance of broilers exposed to high temperatures. This improvement is attributed to the increased antioxidant capacity, improved intestinal barrier function, ameliorated intestinal immune function, and improved intestinal bacteria. These results provide a theoretical foundation for CBP utilization in diets to ameliorate growth performance and intestinal health of broilers under high temperatures.


Subject(s)
Antioxidants , Chickens , Animals , Chickens/physiology , Antioxidants/metabolism , Interleukin-10 , Temperature , Dietary Supplements/analysis , Diet/veterinary , Bioengineering , Animal Feed/analysis
12.
ACS Nano ; 17(20): 20611-20620, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37796740

ABSTRACT

Circularly polarized light emission (CPLE) can be potentially applied to three-dimensional displays, information storage, and biometry. However, these applications are practically limited by a low purity of circular polarization, i.e., the small optical dissymmetry factor gCPLE. Herein, glancing angle deposition (GLAD) is performed to produce inorganic nanohelices (NHs) to generate CPLE with large gCPLE values. CdSe NHs emit red CPLE with gCPLE = 0.15 at a helical pitch (P) ≈ 570 nm, having a 40-fold amplification of gCPLE compared to that at P ≈ 160 nm. Ceria NHs emit ultraviolet-blue CPLE with gCPLE ≈ 0.06 at P ≈ 830 nm, with a 103-fold amplification compared to that at P ≈ 110 nm. Both the photoluminescence and scattering among the close-packed NHs complicatedly account for the large gCPLE values, as revealed by the numerical simulations. The GLAD-based NH-fabrication platform is devised to generate CPLE with engineerable color and large gCPLE = 10-2-10-1, shedding light on the commercialization of CPLE devices.

13.
Nat Commun ; 14(1): 4611, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528109

ABSTRACT

Metal halide perovskites have shown great promise as a potential candidate for next-generation solid state lighting and display technologies. However, a generic organic ligand-free and antisolvent-free solution method to fabricate highly efficient full-color perovskite light-emitting diodes has not been realized. Herein, by utilizing porous alumina membranes with ultra-small pore size as templates, we have successfully fabricated crystalline all-inorganic perovskite quantum wire arrays with ultrahigh density and excellent uniformity, using a generic organic ligand-free and anti-solvent-free solution method. The quantum confinement effect, in conjunction with the high light out-coupling efficiency, results in high photoluminescence quantum yield for blue, sky-blue, green and pure-red perovskite quantum wires arrays. Consequently, blue, sky-blue, green and pure-red LED devices with spectrally stable electroluminescence have been successfully fabricated, demonstrating external quantum efficiencies of 12.41%, 16.49%, 26.09% and 9.97%, respectively, after introducing a dual-functional small molecule, which serves as surface passivation and hole transporting layer, and a halide vacancy healing agent.

14.
Biosensors (Basel) ; 13(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37504080

ABSTRACT

Food safety related to drug residues in food has become a widespread public concern. Small-molecule drug residue analysis often relies on mass spectrometry, thin-layer chromatography, or enzyme-linked immunosorbent assays (ELISA). Some of these techniques have limited sensitivity and accuracy, while others are time-consuming, costly, and rely on specialized equipment that requires skilled operation. Therefore, the development of a sensitive, fast, and easy-to-operate biosensor could provide an accessible alternative to conventional small-molecule analysis. Here, we developed a nanocup array-enhanced metasurface plasmon resonance (MetaSPR) chip coupled with gold nanoparticles (AuNPs) (MSPRAN) to detect small molecules. As sulfamethazine drug residues in poultry eggs may cause health issues, we selected this as a model to evaluate the feasibility of using MSPRAN for small-molecule detection. The MSPRAN biosensor employed competitive immunoassay technology for sulfamethazine detection. The limit of detection was calculated as 73 pg/mL, with sensitivity approximately twice that of previously reported detection methods. Additionally, the recovery rate of the biosensor, tested in egg samples, was similar to that measured using ELISA. Overall, this newly developed MSPRAN biosensor platform for small-molecule detection provides fast and reliable results, facile operation, and is relatively cost-effective for application in food safety testing, environmental monitoring, or clinical diagnostics.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Surface Plasmon Resonance , Sulfamethazine , Metal Nanoparticles/chemistry , Limit of Detection
15.
Nano Lett ; 23(14): 6664-6672, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37432041

ABSTRACT

Atomically thin monolayer two-dimensional (2D) semiconductors with natural immunity to short channel effects are promising candidates for sub-10 nm very large-scale integration technologies. Herein, the ultimate limit in optoelectronic performances of monolayer WSe2 field-effect transistors (FETs) is examined by constructing a sloping channel down to 6 nm. Using a simple scaling method compatible with current micro/nanofabrication technologies, we achieve a record high saturation current up to 1.3 mA/µm at room temperature, surpassing any reported monolayer 2D semiconductor transistors. Meanwhile, quasi-ballistic transport in WSe2 FETs is first demonstrated; the extracted high saturation velocity of 4.2 × 106 cm/s makes it suitable for extremely sensitive photodetectors. Furthermore, the photoresponse speed can be improved by reducing channel length due to an electric field-assisted detrapping process of photogenerated carriers in localized states. As a result, the sloping-channel device exhibits a faster response, higher detectivity, and additional polarization resolution ability compared to planar micrometer-scale devices.

16.
J Sci Food Agric ; 103(15): 7739-7746, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37440706

ABSTRACT

BACKGROUND: Fiber added to the diet can promote intestinal mucin secretion, relieve intestinal inflammation, and enhance the intestinal barrier function. Glycosylation is the key to mucin function. However, there are few studies on the correlation between dietary fiber and mucin glycosylation, especially two kinds of dietary fiber with different solubility. The aim of this study was to investigate the effects of soluble glucomannan (GM) and insoluble cellulose (CL) treatment on mucin secretion and mucin glycosylation-related gene expression in the colons of mice. RESULTS: The GM group significantly increased the goblet cell number, crypt depth, and the expression of mucin 2 (Muc2) and mucin 3a (Muc3a) genes in the colon. At the same time, the analysis of the colon transcriptome showed that the GM group changed the expression of genes related to the mucin glycosylation process, and the GM group up-regulated the expression of Gcnt3, Gcnt4, St3gal1, Galnt13, and B3gnt6 genes involved in the O-glycosylation process. Similarly, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that differentially glycosylated genes in the GM group were mainly related to the biosynthesis of mucin type O-glycans, while the genes in the CL group were related to the biosynthesis of various types of N-glycans. The correlation analysis between colonic microbes and differentially glycosylated genes also showed that the abundance of Alistipes in the GM group was significantly associated with the expression of Gcnt3, a key glycosylation gene. CONCLUSION: Glucomannan treatment was more favorable for colonic Muc2 and Muc3a secretion and mucin O-glycosylation gene expression. © 2023 Society of Chemical Industry.


Subject(s)
Cellulose , Mucins , Mice , Animals , Mucins/genetics , Glycosylation , Cellulose/metabolism , Colon/metabolism , Polysaccharides/metabolism , Dietary Fiber/metabolism , Gene Expression , Intestinal Mucosa/metabolism
17.
Nanomicro Lett ; 15(1): 125, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188867

ABSTRACT

Embedding submicrocavities is an effective approach to improve the light out-coupling efficiency (LOCE) for planar perovskite light-emitting diodes (PeLEDs). In this work, we employ phenethylammonium iodide (PEAI) to trigger the Ostwald ripening for the downward recrystallization of perovskite, resulting in spontaneous formation of buried submicrocavities as light output coupler. The simulation suggests the buried submicrocavities can improve the LOCE from 26.8 to 36.2% for near-infrared light. Therefore, PeLED yields peak external quantum efficiency (EQE) increasing from 17.3% at current density of 114 mA cm-2 to 25.5% at current density of 109 mA cm-2 and a radiance increasing from 109 to 487 W sr-1 m-2 with low rolling-off. The turn-on voltage decreased from 1.25 to 1.15 V at 0.1 W sr-1 m-2. Besides, downward recrystallization process slightly reduces the trap density from 8.90 × 1015 to 7.27 × 1015 cm-3. This work provides a self-assembly method to integrate buried output coupler for boosting the performance of PeLEDs.

18.
Front Med (Lausanne) ; 10: 961886, 2023.
Article in English | MEDLINE | ID: mdl-37144029

ABSTRACT

Objective: The objective of this study is to evaluate the methodological quality of Tuina clinical practice guidelines (CPGs). Methods: Computer searches of China National Knowledge Infrastructure (CNKI), Chinese Technical Periodicals (VIP), Wanfang Data Knowledge Service Platform, PubMed, Cochrane Library, Embase, and other databases were conducted to search for published guidelines on Tuina, with a search time frame from database creation to March 2021. Four evaluators independently used the Appraisal of Guidelines for Research and Evaluation II instrument to evaluate the quality of the included guidelines. Results: A total of eight guidelines related to Tuina were included in this study. The quality of reporting was low in all included guidelines. The highest quality report had a total score of 404 and was rated as "highly recommended." The worst guideline had a final score of 241 and was rated as "not recommended." Overall, 25% of the included guidelines were recommended for clinical use, 37.5% were recommended after revision, and 37.5% were not recommended. Conclusion: The number of existing Tuina clinical practice guidelines is limited. The methodological quality is low, far from the internationally accepted clinical practice guideline development and reporting norms. In the future, reporting specifications of guidelines and the methodology of guideline development, including the rigor of the guideline development process, the clarity, application, and independence of reporting, should be emphasized in the development of the Tuina guidelines. These initiatives could improve the quality and applicability of clinical practice guidelines to guide and standardize the clinical practice of Tuina.

19.
Nat Commun ; 14(1): 1972, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031227

ABSTRACT

Spherical geometry, adaptive optics, and highly dense network of neurons bridging the eye with the visual cortex, are the primary features of human eyes which enable wide field-of-view (FoV), low aberration, excellent adaptivity, and preprocessing of perceived visual information. Therefore, fabricating spherical artificial eyes has garnered enormous scientific interest. However, fusing color vision, in-device preprocessing and optical adaptivity into spherical artificial eyes has always been a tremendous challenge. Herein, we demonstrate a bionic eye comprising tunable liquid crystal optics, and a hemispherical neuromorphic retina with filter-free color vision, enabled by wavelength dependent bidirectional synaptic photo-response in a metal-oxide nanotube/perovskite nanowire hybrid structure. Moreover, by tuning the color selectivity with bias, the device can reconstruct full color images. This work demonstrates a unique approach to address the color vision and optical adaptivity issues associated with artificial eyes that can bring them to a new level approaching their biological counterparts.


Subject(s)
Color Vision , Nanowires , Visual Prosthesis , Humans , Retina/physiology , Oxides
20.
Nano Lett ; 23(7): 2443-2453, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36964745

ABSTRACT

Quantum dots (QDs) are important frontier luminescent materials for future technology in flexible ultrahigh-definition display, optical information internet, and bioimaging due to their outstanding luminescence efficiency and high color purity. I-III-VI QDs and derivatives demonstrate characteristics of composition-dependent band gap, full visible light coverage, high efficiency, excellent stability, and nontoxicity, and hence are expected to be ideal candidates for environmentally friendly materials replacing traditional Cd and Pb-based QDs. In particular, their compositional flexibility is highly conducive to precise control energy band structure and microstructure. Furthermore, the quantum dot light-emitting diodes (QLEDs) exhibits superior prospects in monochrome display and white illumination. This review summarizes the recent progress of I-III-VI QDs and their application in LEDs. First, the luminescence mechanism is illustrated based on their electronic-band structural characteristics. Second, focusing on the latest progress of I-III-VI QDs, the preparation mechanism, and the regulation of photophysical properties, the corresponding application progress particularly in light-emitting diodes is summarized as well. Finally, we provide perspectives on the overall current status and challenges propose performance improvement strategies in promoting the evolution of QDs and QLEDs, indicating the future directions in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...