Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Environ Sci Technol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39178241

ABSTRACT

Electronic waste is an emerging source of per- and polyfluoroalkyl substance (PFAS) emissions to the environment, yet the contribution from hazardous recycling practices in the South Asian region remains unclear. This study detected 41 PFAS in soil samples from e-waste recycling sites in Pakistan and the total concentrations were 7.43-367 ng/g dry weight (dw) (median: 37.7 ng/g dw). Trifluoroacetic acid (TFA) and 6:2 fluorotelomer sulfonic acid emerged as the dominant PFAS, constituting 49% and 13% of the total PFAS concentrations, respectively. Notably, nine CF3-containing emerging PFAS were identified by the high-resolution mass spectrometry (HRMS)-based screening. Specifically, hexafluoroisopropanol and bistriflimide (NTf2) were consistently identified across all the samples, with quantified concentrations reaching up to 854 and 90 ng/g dw, respectively. This suggests their potential association with electronic manufacturing and recycling processes. Furthermore, except for NTf2, all the identified emerging PFAS were confirmed as precursors of TFA with molar yields of 8.87-40.0% by the TOP assay validation in Milli-Q water. Overall, this study reveals significant emission of PFAS from hazardous e-waste recycling practices and emphasizes the identification of emerging sources of TFA from precursor transformation, which are essential for PFAS risk assessment.

2.
iScience ; 27(8): 110524, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39165846

ABSTRACT

RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.

3.
Biomolecules ; 14(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39199289

ABSTRACT

Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.


Subject(s)
Actin-Related Protein 2-3 Complex , Apoptosis , HSP70 Heat-Shock Proteins , Lipopolysaccharides , Teichoic Acids , Teichoic Acids/pharmacology , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Animals , Lipopolysaccharides/pharmacology , Female , Apoptosis/drug effects , Mice , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Cattle , Mastitis/metabolism , Mastitis/microbiology , Mastitis/pathology , Inflammation/metabolism , Inflammation/pathology , Disease Models, Animal , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology
4.
World J Clin Cases ; 12(20): 4199-4205, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015901

ABSTRACT

BACKGROUND: Gustilo III fractures have a high incidence and are difficult to treat. Patients often experience difficulty in wound healing. Negative pressure drainage technology can help shorten wound healing time and has positive value in improving patient prognosis. AIM: To explore the clinical value of the negative pressure sealing drainage technique in wound healing of Gustilo IIIB and IIIC open fractures. METHODS: Eighty patients with Gustilo IIIB and IIIC open fractures with skin and soft tissue injuries who were treated in the Second People's Hospital of Dalian from March 2019 to December 2021 were selected as the research subjects. They were divided into a study group (n = 40, healed with negative pressure closed drainage) and a control group (n = 40, healed with conventional dressing changes) according to the variation in the healing they received. The efficacy of the clinical interventions, the variations in the regression indicators (time to wound healing, time to fracture healing, time to hospitalization), and the conversion and healing of bacterial wounds were compared 1-3 mo after the intervention. RESULTS: The total effective rate of patients among the study group was 95.00% (38/40), which was notably higher than 75.00% (30/40) among the control group (P < 0.05). The wound healing time, fracture healing time, and hospital stay of the patients in the study group was shorter than the control group (P < 0.05). After the intervention, the negative bacterial culture at the wound site rate and wound healing rate of the patients among the study group increased compared to the control group (P < 0.05). CONCLUSION: Negative pressure sealing and drainage technology has a good therapeutic effect on patients with Gustilo IIIB and IIIC open fracture wounds with skin and soft tissue injury. It can notably enhance the wound healing rate and the negative rate of bacteria on the wound surface and help to speed up the recovery process of patients.

5.
Clin Transl Med ; 14(8): e1770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39083321

ABSTRACT

BACKGROUND: The relationship between noncoding RNAs (ncRNAs) and human diseases has been a hot topic of research, but the study of ncRNAs in cardiovascular diseases (CVDs) is still in its infancy. PIWI-interacting RNA (piRNA), a small ncRNA that binds to the PIWI protein to maintain genome stability by silencing transposons, was widely studied in germ lines and stem cells. In recent years, piRNA has been shown to be involved in key events of multiple CVDs through various epigenetic modifications, revealing the potential value of piRNA as a new biomarker or therapeutic target. CONCLUSION: This review explores origin, degradation, function, mechanism and important role of piRNA in CVDs, and the promising therapeutic targets of piRNA were summarized. This review provide a new strategy for the treatment of CVDs and lay a theoretical foundation for future research. KEY POINTS: piRNA can be used as a potential therapeutic target and biomaker in CVDs. piRNA influences apoptosis, inflammation and angiogenesis by regulating epigenetic modificaions. Critical knowledge gaps remain in the unifying piRNA nomenclature and PIWI-independent function.


Subject(s)
Cardiovascular Diseases , RNA, Small Interfering , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Animals , Piwi-Interacting RNA
6.
Biomed Pharmacother ; 178: 117195, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068852

ABSTRACT

Da Chuanxiong Formula (DCXF) is a traditional herbal prescription used for pain management. It consists of Chuanxiong Rhizoma (CR) and Gastrodiae Rhizoma (GR). Despite its long history of use, the underlying therapeutic mechanism of DCXF remains insufficiently understood. Therefore, in this study, key target genes were obtained through network pharmacology research methods and molecular docking techniques, including transient receptor potential vanilloid 1 (TRPV1), adenosine A2a receptor (ADORA2A), nuclear receptor subfamily 3 group C member 1 (NR3C1), and protein kinase C beta (PRKCB). Molecular dynamics simulations demonstrated the favorable binding between all four key genes and their corresponding compounds. Notably, chronic constriction injury (CCI) treatment resulted in a significant decrease in mechanical threshold and thermal latency period for rat foot contraction, which was ameliorated upon administration of DCXF. Furthermore, real-time quantitative reverse transcription PCR (RT-qPCR) and western blot (WB) analyses indicated an upregulation of TRPV1, ADORA2A, NR3C1, and PRKCB expression in the rat dorsal root ganglion following CCI, which was attenuated by treatment with DCXF. The expressions of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6), in the rat dorsal root ganglion were assessed using ELISA, confirming consistent trends with the aforementioned findings. The results of this study offer a promising theoretical foundation for the utilization of DCXF in the treatment of neuropathic pain (NP).


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Neuralgia , Rats, Sprague-Dawley , Animals , Neuralgia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Male , Rats , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Disease Models, Animal
7.
J Hazard Mater ; 477: 135261, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032178

ABSTRACT

The microbial degradation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA), fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and fluorotelomer betaines (5:3 and 5:1:2 FTB) in aerobic wetland soil was investigated during a 100-day incubation. The half-lives of 6:2 FTSA in the treatments with diethylene glycol butyl ether as the sole carbon source (NA treatment) and with additional supplementation of sodium acetate (ED treatment) were determined to be 26.2 and 16.7 days, respectively. By day 100, ∼20 mol% of 6:2 FTAB was degraded in the NA and ED treatments. The potential transformation products of 6:2 FTSA and 6:2 FTAB were identified using liquid/gas chromatography-high resolution mass spectrometry, and their biotransformation pathways were proposed. In contrast, 5:3 and 5:1:2 FTB exhibited high persistence under two carbon source conditions. There was no intense alteration in the diversity of soil bacterial communities under the stress of fluorotelomer compounds at the level of ∼150 µg/L. The supplementation of sodium acetate led to an enrichment of bacterial species within the genera Hydrogenophaga (phylum Proteobacteria) and Rhodococcus (phylum Actinobacteria), promoting the biodegradation of 6:2 FTSA and 6:2 FTAB and the formation of transformation products. Species from the genus Rhodococcus were potentially crucial functional microorganisms involved in the degradation of 6:2 FTSA.


Subject(s)
Biodegradation, Environmental , Biotransformation , Soil Microbiology , Soil Pollutants , Wetlands , Soil Pollutants/metabolism , Bacteria/metabolism , Aerobiosis
8.
Front Vet Sci ; 11: 1417078, 2024.
Article in English | MEDLINE | ID: mdl-38952807

ABSTRACT

It has been well documented that n-3 polyunsaturated fatty acids (n-3 PUFA) can alleviate inflammation caused by Escherichia coli (E. coli) lipopolysaccharides (LPS), the etiologic agents that causing yellow or white dysentery in young pigs. However, it remains unclear whether the increase in n-3 PUFA availability could enhance the ability of nursery pigs to resist invasion by E. coli. LPS. Twenty-four 21-day-old female piglets, each two of them from the same sow fed the beef tallow (BT) or fish oil (FO) diets, were allocated into four treatment groups: BT-CON, piglets from the BT-fed sows and intraperitoneally injected with saline (9 g/L); BT-LPS, piglets from the BT-fed sows and injected with LPS (100 µg/kg body weight); FO-CON, piglets from the FO-fed sows and injected with saline; FO-LPS, piglets from the FO-fed sows and injected with LPS. Following 2 h of LPS challenge, the magnitudes of increase in body temperature approached to a marked (p < 0.01) difference between the BT-CON and BT-LPS piglets, whereas the dramatic (p < 0.01) difference between the FO-CON and FO-LPS piglets was only observed at 4 h post LPS challenge. The body temperature averaged across the time points evaluated was about 0.2°C lower (p < 0.05) in the FO group than in the BT group. The FO group had lower (p < 0.05) mean corpuscular hemoglobin concentration, lower increase in serum interleukin (IL)-1ß (p < 0.10) and IL-8 (p < 0.05) levels, higher (p < 0.01) serum albumin concentration, and higher (p = 0.10) ratios of jejunum villus height to crypt depth than the BT group. The FO group had much higher (p < 0.0001) ileal content of C20:5n3, C24:0, and C22:6n3, which were 2-4 times the content of the BT group. LPS challenge resulted in decreased (p < 0.05) intestinal C20:1 and C20:5n3 content, and the decrease (p < 0.05) in intestinal C20:3n6 and C24:1 content was observed in the BT-LPS piglets rather than in the FO-LPS piglets. Taken together, this study indicated that maternal consumption of fish oil protected breast-fed piglets against E. coli LPS-induced damage through reshaping of intestinal fatty acids profile, which sheds new light on the development of nutritional strategies to enhance the ability of young pigs to resist E. coli invasion.

9.
J Psychiatr Res ; 176: 198-204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878647

ABSTRACT

PURPOSE: Parents of children with cancer are exposed to risks of developing post-traumatic stress disorder (PTSD) symptoms, but few studies have explored PTSD symptoms of Chinese parents of children with acute lymphoblastic leukemia (ALL). Our study aimed to examine the association between social support and PTSD symptoms and to examine the mediating effect of positive expectations in this relationship among parents of children with ALL. METHODS: A cross-sectional study was conducted of consecutive parents of children with ALL in the Shengjing Hospital of China Medical University. A total of 177 parents eligible for this study completed questionnaires on PTSD symptoms, perceived social support, optimism and general self-efficacy anonymously. Asymptotic and resampling strategies were used to examine how positive expectations mediated the association between perceived social support and PTSD symptoms. RESULTS: Mean score of PTSD symptoms was 37.64 ± 14.44; 29.4% of the sample scored 44 and above, 19.8% scored 50 and above. After adjusting for covariates, perceived social support was negatively associated with the total score of PTSD symptoms (ß = -0.209, p < 0.01). Positive expectations were found to mediate the relationship between perceived social support and PTSD symptoms, especially for the symptoms of avoidance and hyperarousal. CONCLUSIONS: Optimism and general self-efficacy fully mediated the association between perceived social support and PTSD symptoms. Therefore, social support and positive expectations should be included in PTSD preventions and treatments targeting Chinese parents of children with ALL.


Subject(s)
Parents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Social Support , Stress Disorders, Post-Traumatic , Humans , Female , Male , Parents/psychology , Cross-Sectional Studies , Adult , Child , Middle Aged , Self Efficacy , China , Optimism , Adolescent
10.
Pharmacol Res ; 206: 107279, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942340

ABSTRACT

Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.


Subject(s)
Cardiovascular Diseases , RNA, Small Untranslated , RNA, Transfer , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Animals , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/therapeutic use , RNA, Small Untranslated/metabolism
11.
Environ Sci Technol ; 58(24): 10740-10751, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38771797

ABSTRACT

The contamination status of novel organophosphate esters (NOPEs) and their precursors organophosphite antioxidants (OPAs) and hydroxylated/diester transformation products (OH-OPEs/di-OPEs) in soils across a large-scale area in China were investigated. The total concentrations of the three test NOPEs in soil were 82.4-716 ng g-1, which were considerably higher than those of traditional OPEs (4.50-430 ng g-1), OPAs (n.d.-30.8 ng g-1), OH-OPEs (n.d.-0.49 ng g-1), and di-OPEs (0.57-21.1 ng g-1). One NOPE compound, i.e., tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) contributed over 65% of the concentrations of the studied OPE-associated contaminants. A 30-day soil incubation experiment was performed to confirm the influence of AO168 = O on soil bacterial communities. Specific genera belonging to Proteobacteria, such as Lysobacter and Ensifer, were enriched in AO168 = O-contaminated soils. Moreover, the ecological function of methylotrophy was observed to be significantly enhanced (t-test, p < 0.01) in soil treated with AO168 = O, while nitrogen fixation was significantly inhibited (t-test, p < 0.01). These findings comprehensively revealed the contamination status of OPE-associated contaminants in the soil environment and provided the first evidence of the effects of NOPEs on soil microbial communities.


Subject(s)
Antioxidants , Esters , Organophosphates , Soil Microbiology , Soil Pollutants , Soil , Soil/chemistry , Bacteria , China
12.
Front Public Health ; 12: 1388069, 2024.
Article in English | MEDLINE | ID: mdl-38651122

ABSTRACT

Objective: Evidence regarding the effects of particulate matter (PM) pollutants on cardiovascular disease (CVD) mortality remains limited in Shanghai, China. Our objective was to thoroughly evaluate associations between PM pollutants and CVD mortality. Methods: Daily data on CVD mortality, PM (PM10 and PM2.5) pollutants, and meteorological variables in Shanghai, China were gathered from 2003 to 2020. We utilized a time-series design with the generalized additive model to assess associations between PM pollutants and CVD mortality. Additionally, we conducted stratified analyses based on sex, age, education, and seasons using the same model. Results: We found that PM pollutants had a significant association with CVD mortality during the study period. Specifically, there was a 0.29% (95%CI: 0.14, 0.44) increase in CVD mortality for every 10 µg/m3 rise in a 2-day average (lag01) concentration of PM10. A 0.28% (95% CI: 0.07, 0.49) increase in CVD mortality was associated with every 10 µg/m3 rise in PM2.5 concentration at lag01. Overall, the estimated effects of PM10 and PM2.5 were larger in the warm period compared with the cold period. Furthermore, males and the older adult exhibited greater susceptibility to PM10 and PM2.5 exposure, and individuals with lower education levels experienced more significant effects from PM10 and PM2.5 than those with higher education levels. Conclusion: Our findings suggested that PM pollutants have a substantial impact on increasing CVD mortality in Shanghai, China. Moreover, the impacts of air pollution on health may be altered by factors such as season, sex, age, and educational levels.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Environmental Exposure , Particulate Matter , Humans , China/epidemiology , Cardiovascular Diseases/mortality , Male , Female , Middle Aged , Air Pollutants/adverse effects , Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Air Pollution/adverse effects , Seasons , Sex Factors
13.
Sci Total Environ ; 927: 172064, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569968

ABSTRACT

Soil parent material is the second most influential factor in pedogenesis, influencing soil properties and microbial communities. Different assembly processes shape diverse functional microbial communities. The question remains unresolved regarding how these ecological assembly processes affect microbial communities and soil functionality within soils on different parent materials. We collected soil samples developed from typical parent materials, including basalt, granite, metamorphic rock, and marine sediments across soil profiles at depths of 0-20, 20-40, 40-80, and 80-100 cm, within rubber plantations on Hainan Island, China. We determined bacterial community characteristics, community assembly processes, and soil enzyme-related functions using 16S rRNA high-throughput sequencing and enzyme activity analyses. We found homogeneous selection, dispersal limitation, and drift processes were the dominant drivers of bacterial community assembly across soils on different parent materials. In soils on basalt, lower pH and higher moisture triggered a homogeneous selection-dominated assembly process, leading to a less diverse community but otherwise higher carbon and nitrogen cycling enzyme activities. As deterministic process decreased, bacterial community diversity increased with stochastic process. In soils on marine sediments, lower water, carbon, and nutrient content limited the dispersal of bacterial communities, resulting in higher community diversity and an increased capacity to utilize relative recalcitrant substrates by releasing more oxidases. The r-strategy Bacteroidetes and genera Sphingomonas, Bacillus, Vibrionimonas, Ochrobactrum positively correlated with enzyme-related function, whereas k-strategy Acidobacteria, Verrucomicrobia and genera Acidothermus, Burkholderia-Caballeronia-Paraburkholderia, HSB OF53-F07 showed negative correlations. Our study suggests that parent material could influence bacterial community assembly processes, diversity, and soil enzyme-related functions via soil properties.


Subject(s)
Bacteria , Microbiota , Soil Microbiology , Soil , Soil/chemistry , China , RNA, Ribosomal, 16S , Biodiversity
14.
Eur J Med Chem ; 270: 116392, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38608408

ABSTRACT

The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 µg/mL) and hydroxyethyl IDO 10e (0.25-1 µg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.


Subject(s)
Anti-Bacterial Agents , Norfloxacin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Norfloxacin/pharmacology , Bacteria , Cell Membrane Permeability , DNA/pharmacology , Microbial Sensitivity Tests
15.
Trials ; 25(1): 200, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509589

ABSTRACT

BACKGROUND: The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS: The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION: The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.


Subject(s)
Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Middle Aged , Aged , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Parkinson Disease/complications , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/methods , Quality of Life , Exercise Therapy/methods , Double-Blind Method , Randomized Controlled Trials as Topic
16.
Plant Physiol Biochem ; 209: 108540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518398

ABSTRACT

Citrus, cultivated extensively across the globe, possesses considerable economic importance and nutritional value. With the degradation of chlorophyll and accumulation of carotenoids, mature citrus fruits develop an orange-yellow peel, enhancing fruit value and consumer preference. MYB transcription factors (TFs) exert a significant role in diverse plant developmental processes and investigating their involvement in fruit coloration is crucial for developing new cultivars. This work aimed to characterize a citrus TF, CrMYB33, whose expression was found to be positively correlated with carotenoid biosynthesis during fruit ripening. The interference of CrMYB33 expression in citrus fruit resulted in inhibition of carotenoid accumulation, down-regulation of carotenoid biosynthetic genes, and a slower rate of chlorophyll degradation. Conversely, overexpression of CrMYB33 in tomato (Solanum lycopersicum) enhanced chlorophyll degradation and carotenoid biosynthesis, resulting in a deeper red coloration of the fruits. Furthermore, the transcription of associated genes was upregulated in CrMYB33-overexpressing tomato fruits. Additional assays reveal that CrMYB33 exhibits direct links and activation of the promoters of lycopene ß-cyclase 2 (CrLCYb2), and ß-carotene hydroxylases 2 (CrBCH2), both crucial genes in the carotenoid biosynthetic pathway. Additionally, it was found to inhibit chlorophyllase (CrCLH), a gene essential in chlorophyll degradation. These findings provide insight into the observed changes in LCYb2, BCH2, and CLH expression in the transgenic lines under investigation. In conclusion, our study revealed that CrMYB33 modulates carotenoid accumulation and chlorophyll degradation in citrus fruits through transcriptionally activating genes involved in metabolic pathways.


Subject(s)
Citrus , Citrus/genetics , Citrus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Carotenoids/metabolism , Chlorophyll/metabolism , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Stem Cell Res Ther ; 15(1): 43, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38360659

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury to the central nervous system often causes severe complications. The activation of endogenous neural stem cells (NSCs) is considered a promising therapeutic strategy for nerve repair. However, the specific biological processes and molecular mechanisms of NSC activation remain unclear, and the role of N6-methyladenosine (m6A) methylation modification in this process has not been explored. METHODS: NSCs were subjected to hypoxia/reoxygenation (H/R) to simulate ischemia-reperfusion in vivo. m6A RNA methylation quantitative kit was used to measure the total RNA m6A methylation level. Quantitative real-time PCR was used to detect methyltransferase and demethylase mRNA expression levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted for NSCs in control and H/R groups, and the sequencing results were analyzed using bioinformatics. Finally, the migration ability of NSCs was identified by wound healing assays, and the proliferative capacity of NSCs was assessed using the cell counting kit-8, EdU assays and cell spheroidization assays. RESULTS: Overall of m6A modification level and Mettl14 mRNA expression increased in NSCs after H/R treatment. The m6A methylation and expression profiles of mRNAs in NSCs after H/R are described for the first time. Through the joint analysis of MeRIP-seq and RNA-seq results, we verified the proliferation of NSCs after H/R, which was regulated by m6A methylation modification. Seven hub genes were identified to play key roles in the regulatory process. Knockdown of Mettl14 significantly inhibited the proliferation of NSCs. In addition, separate analysis of the MeRIP-seq results suggested that m6A methylation regulates cell migration and differentiation in ways other than affecting mRNA expression. Subsequent experiments confirmed the migration ability of NSCs was suppressed by knockdown of Mettl14. CONCLUSION: The biological behaviors of NSCs after H/R are closely related to m6A methylation of mRNAs, and Mettl14 was confirmed to be involved in cell proliferation and migration.


Subject(s)
Hypoxia , Neural Stem Cells , Mice , Animals , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Differentiation/genetics , Hypoxia/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 49(2): 487-497, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403324

ABSTRACT

This study aims to explore the anti-inflammatory, vasodilation, and cardioprotective effects of the intestinal absorption liquids containing Xinshubao Tablets or single herbs, and to elucidate the potential mechanism based on network pharmacology. Western blot was then conducted to validate the expression changes of core proteins. Lipopolysaccharide(LPS)-stimulated RAW264.7 cells were used to observe the anti-inflammatory effect. The vasodilation activity was examined by the microvessel relaxation assay in vitro. Oxygen-glucose deprivation(OGD)-induced H9c2 cells were used to investigate the cardioprotective effect. The chemical components were retrieved from Herb databases and composition of Xinshubao Tablets drug-containing intestinal absorption solution. Drug targets were retrieved from SwissTargetPrediction databases. GeneCards was searched for the targets associated with the anti-inflammatory, vasodilation, and cardioprotective effects. The common targets shared by the drug and the effects were used to establish the protein-protein interaction(PPI) network, from which the core targets were obtained. Finally, the core targets were imported into Cytoscape 3.9.1 for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses. The anti-inflammatory experiment showed that both Xinshubao Tablets and the single herbs constituting this formula had anti-inflammatory effects. Curcumae Radix had the strongest inhibitory effect on the production of tumor necrosis factor-α(TNF-α), and Salviae Miltiorrhizae Radix et Rhizoma had the strongest inhibitory effect on the generation of interleukin-6(IL-6). Xinshubao Tablets, Curcumae Radix, and Crataegi Fructus had vasodilation effect, and Crataegi Fructus had the strongest effect. Xinshubao Tablets, Salviae Miltiorrhizae Radix et Rhizoma, Acanthopanacis Senticosi Radix et Rhizoma seu Caulis, and Paeoniae Radix Alba had cardioprotective effects, and Salviae Miltiorrhizae Radix et Rhizoma had the strongest cardioprotective effect. Network pharmacology results demonstrated that except the whole formula, Salviae Miltiorrhizae Radix et Rhizoma had the most components with anti-inflammatory effect, and Curcumae Radix had the most components with vasodilation and cardioprotective effects, followed by Salviae Miltiorrhizae Radix et Rhizoma. The nitric oxide synthase 3(NOS3) was predicted as the core target for the anti-inflammatory, vasodilation, and cardioprotective effects. Western blot results showed that Xinshubao Tablets significantly up-regulated the expression of NOS3 in OGD-induced H9c2 cells. GO enrichment analysis showed that the effects were mainly related to lipid exported from cell, regulation of blood pressure, and inflammatory response. KEGG pathway enrichment predicted AGE-RAGE and HIF-1 signaling pathways as the key pathways.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Vasodilation , Rhizome/chemistry , Plant Roots/chemistry , Tumor Necrosis Factor-alpha , Medicine, Chinese Traditional
20.
Environ Sci Technol ; 58(5): 2446-2457, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38178542

ABSTRACT

The 6:2 fluorotelomer sulfonamide (6:2 FTSAm)-based compounds signify a prominent group of per- and polyfluoroalkyl substances (PFAS) widely used in contemporary aqueous film-forming foam (AFFF) formulations. Despite their widespread presence, the biotransformation behavior of these compounds in wastewater treatment plants remains uncertain. This study investigated the biotransformation of 6:2 FTSAm-based amine oxide (6:2 FTNO), alkylbetaine (6:2 FTAB), and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) in aerobic sludge over a 100-day incubation period. The biotransformation of 6:2 fluorotelomer sulfonamide alkylamine (6:2 FTAA), a primary intermediate product of 6:2 FTNO, was indirectly assessed. Their stability was ranked based on the estimated half-lives (t1/2): 6:2 FTAB (no obvious products were detected) ≫ 6:2 FTSA (t1/2 ≈28.8 days) > 6:2 FTAA (t1/2 ≈11.5 days) > 6:2 FTNO (t1/2 ≈1.2 days). Seven transformation products of 6:2 FTSA and 15 products of 6:2 FTNO were identified through nontarget and suspect screening using high-resolution mass spectrometry. The transformation pathways of 6:2 FTNO and 6:2 FTSA in aerobic sludge were proposed. Interestingly, 6:2 FTSAm was hardly hydrolyzed to 6:2 FTSA and further biotransformed to perfluoroalkyl carboxylic acids (PFCAs). Furthermore, the novel pathways for the generation of perfluoroheptanoic acid (PFHpA) from 6:2 FTSA were revealed.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Sewage/chemistry , Oxides , Amines , Fluorocarbons/analysis , Biotransformation , Sulfonamides/metabolism , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL