Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202404332, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700477

ABSTRACT

Solid electrolyte interphase (SEI) crucially affects the rate performance and cycling lifespan, yet to date more extensive research is still needed in potassium-ion batteries. We report an ultra-thin and KF-enriched SEI triggered by tuned fluorinated surface design in electrode. Our results reveal that fluorination engineering alters the interfacial chemical environment to facilitate inherited electronic conductivity, enhance adsorption ability of potassium, induce localized surface polarization to guide electrolyte decomposition behavior for SEI formation, and especially, enrich the KF crystals in SEI by self-sacrifice from C-F bond cleavage. Hence, the regulated fluorinated electrode with generated ultra-thin, uniform, and KF-enriched SEI shows improved capacity of 439.3 mAh g-1 (3.82 mAh cm--2), boosted rate performance (202.3 mAh g-1 at 8.70 mA cm-2) and durable cycling performance (even under high loading of ~8.7 mg cm-2). We expect this practical engineering principle to open up new opportunities for upgrading the development of potassium-ion batteries.

2.
Environ Res ; 214(Pt 3): 113969, 2022 11.
Article in English | MEDLINE | ID: mdl-35948151

ABSTRACT

Supported-adsorbents growing on the substrate in situ are equipped with the advantages of high adsorption capacity, excellent regeneration performance, and adaptability to complex wastewater. However, the effects of substrate on the adsorption properties of supported-adsorbent are rarely considered, which will hinder its development and scale-up applications. In this study, the influences of different substrates (Ti, Mo, W, CC) on the Ag+ adsorption behavior of supported-MoS2 adsorbents were investigated. The adsorption kinetics, adsorption mechanism, and the renewability of these supported-MoS2 were compared orderly. As a result, MoS2 grown on a tungsten substrate (MoS2-W) exhibits a remarkable adsorption capacity for Ag+ (1.98 mg cm-2 and 598.80 mg g-1), which is 6.38-33 times more than the other three supported-MoS2. Moreover, the MoS2-W also possesses an ultrahigh distribution coefficient (24.80 mL cm-2) for Ag+, and the selection coefficient can reach 1984. XRD and electrochemical characterization analysis indicated that Ag+ adsorption performance of supported-MoS2 is positively correlated with the degree of its amorphous structure. Substrate W with the terrific electrical properties which may facilitate the disordered growth of MoS2, resulting in more active sites exposed, and endow MoS2-W with outstanding Ag+ capture performance. Finally, the supported-MoS2 retains a high removal efficiency of Ag+ after 5 cycles of adsorption and desorption. This study provides a novel perspective for promoting the practical application of supported-sorbents to recycle heavy metals.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Kinetics , Metals, Heavy/analysis , Molybdenum/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 56(14): 10412-10422, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35793711

ABSTRACT

Acid recycling and arsenic recovery from strongly acidic wastewater are goals of the metallurgical industry to reduce carbon emissions. In this study, arsenic was recovered using a hydroxyl-enriched CeO2 adsorbent, and the adsorption mechanism in a strongly acidic solution was investigated. The adsorption capacities of 88.59 mg/g for As(III) and 126.211 mg/g for As(V) at pH 1.0 are the highest reported values to date. It is revealed that the hydroxyl groups on the CeO2 surface can buffer hydrogen ions, and the isoelectric point of the material can be reduced to pH 1.52. The binding energy of arsenic is -1.25 eV for the hydroxyl-enriched CeO2 and -2.24 eV for CeO2 without hydroxyl groups. Additionally, the protonated hydroxyl groups reduce the oxidation energy of As(III) and promote the adsorption of arsenic by forming new active sites in the strongly acidic solution. Nearly 98.11% of arsenic (initial concentration is 886.8 mg/L) is removed within 24 h without pH adjustment, indicating the feasibility of hydroxyl-enriched CeO2 for recovering arsenic and acid. This work investigated the adsorption and proton-enhanced oxidation mechanism of arsenic by hydroxyl-enriched CeO2 in strongly acidic wastewater.


Subject(s)
Arsenic , Cerium , Water Pollutants, Chemical , Adsorption , Arsenic/chemistry , Hydrogen-Ion Concentration , Hydroxyl Radical , Protons , Wastewater , Water Pollutants, Chemical/chemistry
4.
Environ Int ; 152: 106512, 2021 07.
Article in English | MEDLINE | ID: mdl-33756431

ABSTRACT

Wastewater treatment for heavy metals is currently transitioning from pollution remediation towards resource recovery. As a controllable and environment-friendly method, electrochemical technologies have recently gained significant attention. However, there is a lack of systematic and goal oriented summarize of electrochemical metal recovery techniques, which has inhibited the optimized application of these methods. This review aims at recent advances in electrochemical metal recovery techniques, by comparing different electrochemical recovery methods, attempts to target recycling heavy metal resources with minimize energy consumption, boost recovery efficiency and realize the commercial application. In this review, different electrochemical recovery methods (including E-adsorption recovery, E-oxidation recovery, E-reduction recovery, and E-precipitation recovery) for recovering heavy metals are introduced, followed an analysis of their corresponding mechanisms, influencing factors, and recovery efficiencies. In addition, the mass transfer efficiency can be promoted further through optimizing electrodes and reactors, and multiple technologies (photo-electrochemical and sono-electrochemical) could to be used synergistically improve recovery efficiencies. Finally, the most promising directions for electrochemical recovery of heavy metals are discussed along with the challenges and future opportunities of electrochemical technology in recycling heavy metals from wastewater.


Subject(s)
Metals, Heavy , Water Purification , Adsorption , Ions , Metals, Heavy/analysis , Wastewater
5.
Sci Total Environ ; 778: 146301, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33725599

ABSTRACT

Graphene has shown great potential in various application fields due to its excellent carrier transportation, ultra-high specific surface area, good mechanical properties, and light transmittance. However, pure graphene still exhibits some insurmountable defects, such as difficulty in simple and large-scale preparation, and limitations in application. The electrochemical method is a simple, clean, and environmentally friendly method. The rapid and simple preparation of graphene and its derivatives by electrochemical methods has important environmental significance. Moreover, rGO-based nanohybrids can be prepared by convenient and quick electrodeposition or cyclic voltammetry (CV), or to change the morphology and structure of graphene and its derivatives to achieve the purpose of improving material properties. This work mainly summarizes electrochemically related graphene from four aspects: (i) the method of electrochemical exfoliation of graphene; (ii) types of electrodeposition rGO-based nanohybrids; (iii) electrochemical regulation of the structure of rGO-based mixtures; (iv) environmental applications of rGO-based nanohybrids prepared by electrodeposition. This article critically discusses the advantages and disadvantages of electrochemical-related graphene, outlines future challenges, and provides insightful views and references for other researchers.

6.
Environ Res ; 191: 110212, 2020 12.
Article in English | MEDLINE | ID: mdl-32931790

ABSTRACT

Bioelectrochemical systems (BESs) exhibit great potential for simultaneous wastewater treatment and energy recovery. However, the efficiency of microbial electrocatalysis is fundamentally limited by the high resistance and poor biocompatibility of electrode materials. Herein, we construct a novel "binder-free" 3D biocompatible bioelectrode consists of 1D aminated carbon nanotubes (CNTs-NH2) and 2D conductive reduced graphene oxide (rGO) nanosheets through one-step electrodeposition. As expected, the maximum current density reached to 3.25 ± 0.03 mA cm-2 with the rGO@CNTs-NH2 electrode, which is 4.33-fold higher than that of a bare rGO (0.75 ± 0.01 mA cm-2), and is among the best performance reported for three-dimensional electrodes. The high microbial electrocatalytic activity is mainly attributed to the excellent performance of electron transfer and bacterial colonization, which originates from the 3D interconnecting scaffold, fast 1D CNTs "e-bridge" and positively charged surface.


Subject(s)
Bioelectric Energy Sources , Graphite , Nanotubes, Carbon , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...