Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
Nature ; 600(7887): 164-169, 2021 12.
Article in English | MEDLINE | ID: mdl-34789875

ABSTRACT

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pruritus/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/chemistry , Receptors, Neuropeptide/metabolism , Allergens/immunology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Consensus Sequence , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Models, Molecular , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/ultrastructure , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Neuropeptide/immunology , Receptors, Neuropeptide/ultrastructure
2.
Front Pharmacol ; 11: 541426, 2020.
Article in English | MEDLINE | ID: mdl-33013384

ABSTRACT

Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent antioxidant activity. Here, we investigated the protective effect of SalB against renal ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative stress markers and inflammatory biomarkers, we found that SalB could improve kidney damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1, pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1ß, which were significantly upregulated in the kidney tissues of I/R group, was effectively reversed by SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress, proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.

3.
Zhongguo Zhong Yao Za Zhi ; 39(23): 4685-8, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25911824

ABSTRACT

Study the infect of child anorexia granule on serum ghrelin and leptin of anorexia children and its clinical efficacy. Selected 81 cases of anorexia children aged 1-6 years old into treatment group (42 cases) and control group (39 cases), in addition, 30 case healthy children as healthy control group. The control group children were treated with domperidone suspension 0.3 mg x kg(-1) x d(-1), tid, orally 30 minutes before meals. Treatment group were treated with child anorexia granule, 1-3 years 1 package, bid; 4-6 years 1 package, tid; po, 4 weeks as a course of treatment. Study the change of serum ghrelin and leptin before and after therapy. The study demonstrates that before treatment, the serum ghrelin level of disease group was lower than healthy group (P < 0.01), and the serum leptin level was higher than healthy group (P < 0.01). After treatment, the serum ghrelin level both increase, and the serum leptin decline. And the change of treatment group was significantly different with control group (P < 0.01). And the clinical effective rate are 95.23% and 74.35% (P < 0.01). After 6 months of follow-up visit, the children weight significantly increase in treatment group (P < 0.01). Results indicate that child anorexia granule can facilitate secretion of ghrelin, and inhibit secretion of leptin, so as to work up an appetite. And the molecular mechanism is its infect on serum ghrelin, leptin.


Subject(s)
Anorexia/drug therapy , Appetite Regulation/drug effects , Drugs, Chinese Herbal/administration & dosage , Anorexia/metabolism , Anorexia/physiopathology , Body Weight/drug effects , Child , Child, Preschool , Female , Ghrelin/metabolism , Humans , Infant , Leptin/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL