Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257972

ABSTRACT

Lignocellulosic materials are composed of cellulose, hemicellulose and lignin and are one of the most abundant biopolymers in marine environments. The extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, a novel lignin-degrading bacterial strain, LCG003, was isolated from intertidal seawater in Lu Chao Harbor, East China Sea. Phylogenetically, strain LCG003 was affiliated with the genus Aliiglaciecola within the family Alteromonadaceae. Metabolically, strain LCG003 contains various extracellular (signal-fused) glycoside hydrolase genes and carbohydrate transporter genes and can grow with various carbohydrates as the sole carbon source, including glucose, fructose, sucrose, rhamnose, maltose, stachyose and cellulose. Moreover, strain LCG003 contains many genes of amino acid and oligopeptide transporters and extracellular peptidases and can grow with peptone as the sole carbon and nitrogen source, indicating a proteolytic lifestyle. Notably, strain LCG003 contains a gene of dyp-type peroxidase and strain-specific genes involved in the degradation of 4-hydroxy-benzoate and vanillate. We further confirmed that it can decolorize aniline blue and grow with lignin as the sole carbon source. Our results indicate that the Aliiglaciecola species can depolymerize and mineralize lignocellulosic materials and potentially play an important role in the marine carbon cycle.

2.
mSystems ; 9(1): e0108523, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38117068

ABSTRACT

High hydrostatic pressure (HHP) influences the life processes of organisms living at depth in the oceans. While filamentous fungi are one of the essential members of deep-sea microorganisms, few works have explored their piezotolerance to HHP. Here, we obtained three homogeneous Aspergillus sydowii from terrestrial, shallow, and hadal areas, respectively, to compare their pressure resistance. A set of all-around evaluation methods including determination of growth rate, metabolic activity, and microscopic staining observation was established and indicated that A. sydowii DM1 from the hadal area displayed significant piezotolerance. Global analysis of transcriptome data under elevated HHP revealed that A. sydowii DM1 proactively modulated cell membrane permeability, hyphae morphology, and septal quantities for seeking a better livelihood under mild pressure. Besides, differentially expressed genes were mainly enriched in the biosynthesis of amino acids, carbohydrate metabolism, cell process, etc., implying how the filamentous fungi respond to elevated pressure at the molecular level. We speculated that A. sydowii DM1 could acclimatize itself to HHP by adopting several strategies, including environmental response pathway HOG-MAPK, stress proteins, and cellular metabolisms.IMPORTANCEFungi play an ecological and biological function in marine environments, while the physiology of filamentous fungi under high hydrostatic pressure (HHP) is an unknown territory due to current technologies. As filamentous fungi are found in various niches, Aspergillus sp. from deep-sea inspire us to the physiological trait of eukaryotes under HHP, which can be considered as a prospective research model. Here, the evaluation methods we constructed would be universal for most filamentous fungi to assess their pressure resistance, and we found that Aspergillus sydowii DM1 from the hadal area owned better piezotolerance and the active metabolisms under HHP indicated the existence of undiscovered metabolic strategies for hadal fungi. Since pressure-related research of marine fungi has been unexpectedly neglected, our study provided an enlightening strategy for them under HHP; we believed that understanding their adaptation and ecological function in original niches will be accelerated in the perceivable future.


Subject(s)
Aspergillus , Fungi , Hydrostatic Pressure , Prospective Studies , Oceans and Seas , Fungi/genetics
3.
Mar Drugs ; 21(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37999409

ABSTRACT

The hadal biosphere is the most mysterious ecosystem on the planet, located in a unique and extreme environment on Earth. To adapt to extreme environmental conditions, hadal microorganisms evolve special strategies and metabolisms to survive and reproduce. However, the secondary metabolites of the hadal microorganisms are poorly understood. In this study, we focused on the isolation and characterization of hadal fungi, screening the potential strains with bioactive natural products. The isolates obtained were detected further for the polyketide synthase (PKS) genes. Two isolates of Alternaria alternata were picked up as the representatives, which had the potential to synthesize active natural products. The epigenetic modifiers were used for the two A. alternata isolates to stimulate functional gene expression in hadal fungi under laboratory conditions. The results showed that the chemical epigenetic modifier, 5-Azacytidine (5-Aza), affected the phenotype, PKS gene expression, production of secondary metabolites, and antimicrobial activity of the hadal fungus A. alternata. The influence of epigenetic modification on natural products was strongest when the concentration of 5-Aza was 50 µM. Furthermore, the modification of epigenetic agents on hadal fungi under high hydrostatic pressure (HHP) of 40 MPa displayed significant effects on PKS gene expression, and also activated the production of new compounds. Our study demonstrates the high biosynthetic potential of cultivable hadal fungi, but also provides evidence for the utility of chemical epigenetic modifiers on active natural products from hadal fungi, providing new ideas for the development and exploitation of microbial resources in extreme environments.


Subject(s)
Biological Products , Ecosystem , Polyketide Synthases/genetics , Hydrostatic Pressure , Epigenesis, Genetic
4.
Microorganisms ; 11(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37764000

ABSTRACT

Bacillota are widely distributed in various environments, owing to their versatile metabolic capabilities and remarkable adaptation strategies. Recent studies reported that Bacillota species were highly enriched in cold seep sediments, but their metabolic capabilities, ecological functions, and adaption mechanisms in the cold seep habitats remained obscure. In this study, we conducted a systematic analysis of the complete genome of a novel Bacillota bacterium strain M8S5, which we isolated from cold seep sediments of the South China Sea at a depth of 1151 m. Phylogenetically, strain M8S5 was affiliated with the genus Abyssisolibacter within the phylum Bacillota. Metabolically, M8S5 is predicted to utilize various carbon and nitrogen sources, including chitin, cellulose, peptide/oligopeptide, amino acids, ethanolamine, and spermidine/putrescine. The pathways of histidine and proline biosynthesis were largely incomplete in strain M8S5, implying that its survival strictly depends on histidine- and proline-related organic matter enriched in the cold seep ecosystems. On the other hand, strain M8S5 contained the genes encoding a variety of extracellular peptidases, e.g., the S8, S11, and C25 families, suggesting its capabilities for extracellular protein degradation. Moreover, we identified a series of anaerobic respiratory genes, such as glycine reductase genes, in strain M8S5, which may allow it to survive in the anaerobic sediments of cold seep environments. Many genes associated with osmoprotectants (e.g., glycine betaine, proline, and trehalose), transporters, molecular chaperones, and reactive oxygen species-scavenging proteins as well as spore formation may contribute to its high-pressure and low-temperature adaptations. These findings regarding the versatile metabolic potentials and multiple adaptation strategies of strain M8S5 will expand our understanding of the Bacillota species in cold seep sediments and their potential roles in the biogeochemical cycling of deep marine ecosystems.

5.
Front Microbiol ; 14: 1207252, 2023.
Article in English | MEDLINE | ID: mdl-37383634

ABSTRACT

Deep-sea fungi have evolved extreme environmental adaptation and possess huge biosynthetic potential of bioactive compounds. However, not much is known about the biosynthesis and regulation of secondary metabolites of deep-sea fungi under extreme environments. Here, we presented the isolation of 15 individual fungal strains from the sediments of the Mariana Trench, which were identified by internal transcribed spacer (ITS) sequence analysis as belonging to 8 different fungal species. High hydrostatic pressure (HHP) assays were performed to identify the piezo-tolerance of the hadal fungi. Among these fungi, Aspergillus sydowii SYX6 was selected as the representative due to the excellent tolerance of HHP and biosynthetic potential of antimicrobial compounds. Vegetative growth and sporulation of A. sydowii SYX6 were affected by HHP. Natural product analysis with different pressure conditions was also performed. Based on bioactivity-guided fractionation, diorcinol was purified and characterized as the bioactive compound, showing significant antimicrobial and antitumor activity. The core functional gene associated with the biosynthetic gene cluster (BGC) of diorcinol was identified in A. sydowii SYX6, named as AspksD. The expression of AspksD was apparently regulated by the HHP treatment, correlated with the regulation of diorcinol production. Based on the effect of the HHP tested here, high pressure affected the fungal development and metabolite production, as well as the expression level of biosynthetic genes which revealed the adaptive relationship between the metabolic pathway and the high-pressure environment at the molecular level.

6.
Front Microbiol ; 14: 1108651, 2023.
Article in English | MEDLINE | ID: mdl-37032874

ABSTRACT

Recently, several reports showed that n-alkanes were abundant in the hadal zone, suggesting that n-alkanes could be an important source of nutrients for microorganisms in hadal ecosystems. To date, most of the published studies on the microbial capacity to degrade hydrocarbons were conducted only at atmospheric temperature and pressure (0.1 MPa), and little is known about whether and which microbes could utilize n-alkanes at in situ environmental conditions in the hadal zone, including low temperature and high hydrostatic pressure (especially >30 MPa). In this study, a piezotolerant bacterium, strain C2-1, was isolated from a Mariana Trench sediment at depth of 5,800 m. Strain C2-1 was able to grow at in situ temperature (4°C) and pressure (58 MPa) with n-alkanes as the sole carbon source. Phylogenetically, strain C2-1 and related strains (TMPB967, ST750PaO-4, IMCC1826, and TTBP476) should be classified into the genus Venatorbacter. Metagenomic analysis using ~5,000 publicly available datasets showed that Venatorbacter has a wide environmental distribution in seawater (38), marine sediments (3), hydrothermal vent plumes (2), Antarctic ice (1), groundwater (13), and marine sponge ecosystems (1). Most Venatorbacter species are non-obligate n-alkane degraders that could utilize, at a minimal, C16-C18 n-alkanes, as well as other different types of carbon substrates, including carbohydrates, amino acids, peptides, and phospholipids. The type II secretion system, extracellular proteases, phospholipase, and endonuclease of Venatorbacter species were robustly expressed in the metatranscriptomes of deep-sea hydrothermal vents, suggesting their important contribution to secondary productivity by degrading extracellular macromolecules. The identification of denitrifying genes suggested a genus-specific ecological potential that allowed Venatorbacter species to be active in anoxic environments, e.g., the oxygen-minimal zone (OMZ) and the deeply buried marine sediments. Our results show that Venatorbacter species are responsible for the degradation of hydrocarbon and extracellular macromolecules, suggesting that they may play an important role in the biogeochemistry process in the Trench ecosystems.

7.
Sci Total Environ ; 880: 163323, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37030385

ABSTRACT

The hadal trenches are "hot spots" for mineralization of organic matter in the deep ocean. Chloroflexi are one of the most dominant and active taxa in trench sediments, serving as important drivers of carbon cycles in hadal trenches. However, current understanding on hadal Chloroflexi is largely restricted to individual trench. This study systematically analyzed the diversity, biogeographic distribution, ecotype partitioning as well as environmental drivers of Chloroflexi in the sediments of hadal trenches, by reanalyzing 16S rRNA gene libraries of 372 samples from 6 trenches around the Pacific Ocean. The results showed that Chloroflexi averagely account for 10.10 % and up to 59.95 % of total microbial communities in the trench sediments. Positive correlations between relative abundance of Chloroflexi and depths down the vertical sediment profiles were observed in all of the sediment cores analyzed, suggesting the increasing significance of Chloroflexi in deeper sediment layers. Overall, trench sediment Chloroflexi were mainly composed of the classes Dehalococcidia, Anaerolineae and JG30-KF-CM66, and four orders i.e. SAR202, Anaerolineales, norank JG30-KF-CM66 and S085, were identified as core taxa that were dominant and prevalent in the hadal trench sediments. A total of 22 subclusters were identified within these core orders, and distinct patterns of ecotype partitioning related with depths down the vertical sediment profiles were observed, suggesting the great diversification of metabolic potentials and environment preference of different Chloroflexi lineages. The spatial distribution of hadal Chloroflexi were found to be significantly related with multiple environmental factors, while depths down the vertical sediment profiles explained the highest proportion of variations. These results provide valuable information for further exploring the roles of Chloroflexi in biogeochemical cycle of the hadal zone, and lay the foundation for understanding the adaptive mechanisms and evolutionary characteristics of microorganisms in hadal trenches.


Subject(s)
Chloroflexi , Microbiota , Pacific Ocean , RNA, Ribosomal, 16S , Ecotype
8.
Microorganisms ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36985204

ABSTRACT

Recent studies reported that highly abundant alkane content exists in the ~11,000 m sediment of the Mariana Trench, and a few key alkane-degrading bacteria were identified in the Mariana Trench. At present, most of the studies on microbes for degrading hydrocarbons were performed mainly at atmospheric pressure (0.1 MPa) and room temperature; little is known about which microbes could be enriched with the addition of n-alkanes under in-situ environmental pressure and temperature conditions in the hadal zone. In this study, we conducted microbial enrichments of sediment from the Mariana Trench with short-chain (SCAs, C7-C17) or long-chain (LCAs, C18-C36) n-alkanes and incubated them at 0.1 MPa/100 MPa and 4 °C under aerobic or anaerobic conditions for 150 days. Microbial diversity analysis showed that a higher microbial diversity was observed at 100 MPa than at 0.1 MPa, irrespective of whether SCAs or LCAs were added. Non-metric multidimensional scaling (nMDS) and hierarchical cluster analysis revealed that different microbial clusters were formed according to hydrostatic pressure and oxygen. Significantly different microbial communities were formed according to pressure or oxygen (p < 0.05). For example, Gammaproteobacteria (Thalassolituus) were the most abundant anaerobic n-alkanes-enriched microbes at 0.1 MPa, whereas the microbial communities shifted to dominance by Gammaproteobacteria (Idiomarina, Halomonas, and Methylophaga) and Bacteroidetes (Arenibacter) at 100 MPa. Compared to the anaerobic treatments, Actinobacteria (Microbacterium) and Alphaproteobacteria (Sulfitobacter and Phenylobacterium) were the most abundant groups with the addition of hydrocarbon under aerobic conditions at 100 MPa. Our results revealed that unique n-alkane-enriched microorganisms were present in the deepest sediment of the Mariana Trench, which may imply that extremely high hydrostatic pressure (100 MPa) and oxygen dramatically affected the processes of microbial-mediated alkane utilization.

9.
Microorganisms ; 11(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985371

ABSTRACT

Shewanella species are widely distributed in various environments, especially deep-sea sediments, due to their remarkable ability to utilize multiple electron receptors and versatile metabolic capabilities. In this study, a novel facultatively anaerobic, psychrophilic, and piezotolerant bacterium, Shewanella sp. MTB7, was isolated from the Mariana Trench at a depth of 5900 m. Here, we report its complete genome sequence and adaptation strategies for survival in deep-sea environments. MTB7 contains what is currently the third-largest genome among all isolated Shewanella strains and shows higher coding density than neighboring strains. Metabolically, MTB7 is predicted to utilize various carbon and nitrogen sources. D-amino acid utilization and HGT-derived purine-degrading genes could contribute to its oligotrophic adaptation. For respiration, the cytochrome o ubiquinol oxidase genes cyoABCDE, typically expressed at high oxygen concentrations, are missing. Conversely, a series of anaerobic respiratory genes are employed, including fumarate reductase, polysulfide reductase, trimethylamine-N-oxide reductase, crotonobetaine reductase, and Mtr subunits. The glycine reductase genes and the triplication of dimethyl sulfoxide reductase genes absent in neighboring strains could also help MTB7 survive in low-oxygen environments. Many genes encoding cold-shock proteins, glycine betaine transporters and biosynthetic enzymes, and reactive oxygen species-scavenging proteins could contribute to its low-temperature adaptation. The genomic analysis of MTB7 will deepen our understanding of microbial adaptation strategies in deep-sea environments.

10.
Front Microbiol ; 13: 992034, 2022.
Article in English | MEDLINE | ID: mdl-36532441

ABSTRACT

Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, H2 oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTVs sediment. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including Sulfurovum represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterota with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample's overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.

11.
3 Biotech ; 12(9): 236, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35999911

ABSTRACT

Halomonas piezotolerans NBT06E8T is a Gram-stain-negative, moderately halophilic, piezotolerant, H2O2 and heavy metal-resistant bacterium, isolated from a deep-sea sediment sample collected from the New Britain Trench at depth of 8900 m. Growth of the strain was observed at 4-45 °C (optimum 30 °C), at pH 5-11 (optimum 8-9) and in 0.5-21% (w/v) NaCl (optimum 3-7%). The optimum pressure for growth was 0.1-30 MPa (megapascal) with tolerance up to 60 MPa. Under optimum growth conditions, the strain could tolerant 15 mM H2O2. Here, we report the complete genome of H. piezotolerans NBT06E8T, which consists of 3,945,801 bp (G + C content of 57.93%) with a single chromosome, 3509 protein-coding genes, 60 tRNAs and 6 rRNA operons. Genomic analysis revealed the capability of utilizing various carbon and nitrogen sources, the presence of multiple toxin-antitoxin systems and strain-specific type VI secretion system benefitting its adaptation to the oligotrophic hadal environments. Multiple respiratory chain components, especially the strain-specific anaerobic enzymes, could allow its survival in both surficial and buried sediments with variable oxygen concentrations. Gene function and metabolic pathway analysis showed that strain NBT06E8T encodes a series of genes related to high hydrostatic pressure tolerance, antioxidative stress and heavy metal resistance, which could also contribute to its deep-sea adaptation strategies. The complete genome sequence of H. piezotolerans NBT06E8T provides further insights into the stress adaptation strategies of deep-sea bacteria and potential biotechnological application of Halomonas species. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03283-3.

12.
Microbiome ; 10(1): 75, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538590

ABSTRACT

BACKGROUND: The deep sea harbors the majority of the microbial biomass in the ocean and is a key site for organic matter (OM) remineralization and storage in the biosphere. Microbial metabolism in the deep ocean is greatly controlled by the generally depleted but periodically fluctuating supply of OM. Currently, little is known about metabolic potentials of dominant deep-sea microbes to cope with the variable OM inputs, especially for those living in the hadal trenches-the deepest part of the ocean. RESULTS: In this study, we report the first extensive examination of the metabolic potentials of hadal sediment Chloroflexi, a dominant phylum in hadal trenches and the global deep ocean. In total, 62 metagenome-assembled-genomes (MAGs) were reconstructed from nine metagenomic datasets derived from sediments of the Mariana Trench. These MAGs represent six novel species, four novel genera, one novel family, and one novel order within the classes Anaerolineae and Dehalococcoidia. Fragment recruitment showed that these MAGs are globally distributed in deep-sea waters and surface sediments, and transcriptomic analysis indicated their in situ activities. Metabolic reconstruction showed that hadal Chloroflexi mainly had a heterotrophic lifestyle, with the potential to degrade a wide range of organic carbon, sulfur, and halogenated compounds. Our results revealed for the first time that hadal Chloroflexi harbor pathways for the complete hydrolytic or oxidative degradation of various recalcitrant OM, including aromatic compounds (e.g., benzoate), polyaromatic hydrocarbons (e.g., fluorene), polychlorobiphenyl (e.g., 4-chlorobiphenyl), and organochlorine compounds (e.g., chloroalkanes, chlorocyclohexane). Moreover, these organisms showed the potential to synthesize energy storage compounds (e.g., trehalose) and had regulatory modules to respond to changes in nutrient conditions. These metabolic traits suggest that Chloroflexi may follow a "feast-or-famine" metabolic strategy, i.e., preferentially consume labile OM and store the energy intracellularly under OM-rich conditions, and utilize the stored energy or degrade recalcitrant OM for survival under OM-limited condition. CONCLUSION: This study expands the current knowledge on metabolic strategies in deep-ocean Chlorolfexi and highlights their significance in deep-sea carbon, sulfur, and halogen cycles. The metabolic plasticity likely provides Chloroflexi with advantages for survival under variable and heterogenic OM inputs in the deep ocean. Video Abstract.


Subject(s)
Chloroflexi , Carbon/metabolism , Chloroflexi/genetics , Ecosystem , Oceans and Seas , Sulfur/metabolism
13.
Microorganisms ; 10(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336213

ABSTRACT

Microbial-mediated utilization of particulate organic matter (POM) during its downward transport from the surface to the deep ocean constitutes a critical component of the global ocean carbon cycle. However, it remains unclear as to how high hydrostatic pressure (HHP) and low temperature (LT) with the sinking particles affects community structure and network interactions of the particle-attached microorganisms (PAM) and those free-living microorganisms (FLM) in the surrounding water. In this study, we investigated microbial succession and network interactions in experiments simulating POM sinking in the ocean. Diatom-derived 13C- and 12C-labeled POM were used to incubate surface water microbial communities from the East China Sea (ECS) under pressure (temperature) of 0.1 (25 °C), 20 (4 °C), and 40 (4 °C) MPa (megapascal). Our results show that the diversity and species richness of the PAM and FLM communities decreased significantly with HHP and LT. Microbial community analysis indicated an increase in the relative abundance of Bacteroidetes at high pressure (40 MPa), mostly at the expense of Gammaproteobacteria, Alphaproteobacteria, and Gracilibacteria at atmospheric pressure. Hydrostatic pressure and temperature affected lifestyle preferences between particle-attached (PA) and free-living (FL) microbes. Ecological network analysis showed that HHP and LT enhanced microbial network interactions and resulted in higher vulnerability to networks of the PAM communities and more resilience of those of the FLM communities. Most interestingly, the PAM communities occupied most of the module hubs of the networks, whereas the FLM communities mainly served as connectors of the modules, suggesting their different ecological roles of the two groups of microbes. These results provided novel insights into how HHP and LT affected microbial community dynamics, ecological networks during POM sinking, and the implications for carbon cycling in the ocean.

14.
Mar Genomics ; 61: 100915, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35058037

ABSTRACT

Parasedimentitalea marina W43T is a novel psychrotolerant and piezotolerant Rhodobacteraceae bacterium isolated from deep-sea water (4000 m) of the New Britain Trench. Here we present the first complete genome sequence of the bacterial genus Parasedimentitalea, which contains a circular chromosome and four plasmids. The 5,080,916 bp long genome exhibits a G + C content of 55.9 mol% and contains 5090 protein-coding and 97 RNA genes. Genomic analysis revealed abundant clues on bacterial cold and high-pressure adaptation and deep-sea lifestyle. The genome is consistent with a heterotrophic, psychrotolerant and piezotolerant lifestyle of the deep-sea environment.


Subject(s)
Rhodobacteraceae , Water , Rhodobacteraceae/genetics , Seawater , Sequence Analysis, DNA , United Kingdom
15.
Mar Life Sci Technol ; 4(1): 150-161, 2022 Feb.
Article in English | MEDLINE | ID: mdl-37073355

ABSTRACT

Hadal trenches are the least explored marine habitat on earth. Archaea has been shown to be the dominant group in trench sediments. However, the activity potentials and detailed diversity of these communities as well as their inter-trench variations are still not known. In this study, we combined datasets from two pairs of primers to investigate at high resolution the structure and activity potentials of the archaeal communities in vertically sectioned sediment cores taken from the deepest points of the Mariana (10,853 m) and Mussau (7011 m) trenches. The compositions of the potentially active communities revealed, via 16S ribosomal RNA gene (rDNA) and RNA (rRNA), significant differences between samples. Marine Group I (MGI), with nine identified subgroups, was the most dominant class in the active archaeal communities of the two trenches. Significantly different species composition and vertical variations were observed between the two trenches. Vertical transitions from aerobic MGI α to anaerobic MGI η and υ subgroups were observed in MST but not in MT sediments, which might be related to the faster microbial oxygen consumption in MST. These results provide a better understanding on archaeal activity and diversity in trench sediments. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-021-00105-y.

16.
Front Microbiol ; 13: 1085063, 2022.
Article in English | MEDLINE | ID: mdl-36713225

ABSTRACT

Antarctic microbes are important agents for evolutionary adaptation and natural resource of bioactive compounds, harboring the particular metabolic pathways to biosynthesize natural products. However, not much is known on symbiotic microbiomes of fish in the Antarctic zone. In the present study, the culture method and whole-genome sequencing were performed. Natural product analyses were carried out to determine the biosynthetic potential. We report the isolation and identification of a symbiotic bacterium Serratia myotis L7-1, that is highly adaptive and resides within Antarctic fish, Trematomus bernacchii. As revealed by genomic analyses, Antarctic strain S. myotis L7-1 possesses carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), stress response genes, antibiotic resistant genes (ARGs), and a complete type IV secretion system which could facilitate competition and colonization in the extreme Antarctic environment. The identification of microbiome gene clusters indicates the biosynthetic potential of bioactive compounds. Based on bioactivity-guided fractionation, serranticin was purified and identified as the bioactive compound, showing significant antibacterial and antitumor activity. The serranticin gene cluster was identified and located on the chrome. Furthermore, the multidrug resistance and strong bacterial antagonism contribute competitive advantages in ecological niches. Our results highlight the existence of a symbiotic bacterium in Antarctic fish largely represented by bioactive natural products and the adaptability to survive in the fish living in Antarctic oceans.

17.
Environ Sci Technol ; 55(22): 15136-15148, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34739205

ABSTRACT

Knowledge of the distribution and dissemination of antibiotic resistance genes (ARGs) is essential for understanding anthropogenic impacts on natural ecosystems. The transportation of ARGs via aquatic environments is significant and has received great attention, but whether there has been anthropogenic ARG pollution to the hadal ocean ecosystem has not been well explored. For investigating ecological health concerns, we profiled the ARG occurrence in sediments of the Mariana Trench (MT) (10 890 m), the deepest region of the ocean. Metagenomic-based ARG profiles showed a sudden increase of abundance and diversity in the surface layer of MT sediments reaching 2.73 × 10-2 copy/cell and 81 subtypes, and a high percentage of ∼63.6% anthropogenic pollution sources was predicted by the Bayesian-modeling classification method. These together suggested that ARG accumulation and anthropogenic impacts have already permeated into the bottom of the deepest corner on the earth. Moreover, six ARG-carrying draft genomes were retrieved using a metagenomic binning strategy, one of which assigned as Streptococcus was identified as a potential bacterial host to contribute to the ARG accumulation in MT, carrying ermF, tetM, tetQ, cfxA2, PBP-2X, and PBP-1A. We propose that the MT ecosystem needs further long-term monitoring for the assessment of human impacts, and our identified three biomarkers (cfxA2, ermF, and mefA) could be used for the rapid monitoring of anthropogenic pollution. Together our findings imply that anthropogenic pollution has penetrated into the deepest region of the ocean and urge for better pollution control to reduce the risk of ARG dissemination to prevent the consistent accumulation and potential threat to the natural environment.


Subject(s)
Anti-Bacterial Agents , Ecosystem , Anti-Bacterial Agents/pharmacology , Bayes Theorem , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans
18.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34668854

ABSTRACT

Hanstruepera crassostreae L53T was compared with Pseudobizionia ponticola MM-14T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of H. crassostreae L53T had complete similarity (100.0%) to that of P. ponticola MM-14T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Pseudobizionia. Draft genomic comparison between the two strains revealed an average nucleotide identity of 96.9 % and a digital DNA-DNA hybridization estimate of 75.3±2.8 %, strongly indicating that the two strains represented a single species. In addition, neither strain displayed any striking difference in metabolic, physiological or chemotaxonomic features. Therefore, we propose that Hanstruepera crassostreae is a later heterotypic synonym of Pseudobizionia ponticola.


Subject(s)
Flavobacteriaceae/classification , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
19.
Article in English | MEDLINE | ID: mdl-34569921

ABSTRACT

Cellulomonas algicola KZ-21T was compared with Cellulomonas aurantiaca THG-SMD2.3T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of Cellulomonas algicola KZ-21T shared complete similarity (100.0 %) with that of Cellulomonas aurantiaca THG-SMD2.3T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Cellulomonas. Genome comparison between the two strains revealed an average nucleotide identity of 99.2 % and a digital DNA-DNA hybridization estimate of 93.7±1.8 %, strongly indicating that the two strains belong to a single species. In addition, neither strain displayed any striking differences in metabolic, physiological or chemotaxonomic features. Therefore, we propose Cellulomonas aurantiaca as a later heterotypic synonym of Cellulomonas algicola.


Subject(s)
Cellulomonas , Bacterial Typing Techniques , Base Composition , Cellulomonas/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Article in English | MEDLINE | ID: mdl-34546871

ABSTRACT

Nonomuraea nitratireducens WYY166T was compared with Nonomuraea phyllanthi PA1-10T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of N. nitratireducens WYY166T had high similarity (99.9 %) to that of N. phyllanthi PA1-10T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Nonomuraea. Draft genomic comparison between the two strains revealed an average nucleotide identity of 99.3 % and a digital DNA-DNA hybridization estimate of 94.4±1.8 %, strongly indicating that the two strains represented a single species. In addition, neither strain displayed any striking difference in metabolic, physiological or chemotaxonomic features. Therefore, we propose Nonomuraea nitratireducens as a later heterotypic synonym of Nonomuraea phyllanthi.


Subject(s)
Fatty Acids , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...