Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Redox Biol ; 71: 103112, 2024 May.
Article in English | MEDLINE | ID: mdl-38461791

ABSTRACT

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Coronavirus/metabolism , Pyruvic Acid/metabolism , Swine Diseases/metabolism , Swine Diseases/pathology , Coronavirus Infections/pathology
2.
J Virol ; 98(3): e0000324, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353538

ABSTRACT

The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-ß production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-ß production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-ß production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Swine Diseases , Animals , Autophagy , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/metabolism , Interferons/metabolism , Microtubules/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Swine , Swine Diseases/virology
3.
J Virol ; 98(2): e0181423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289103

ABSTRACT

HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Coronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus , Interferons/metabolism , Swine , Swine Diseases/virology
4.
J Virol ; 97(10): e0095723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815351

ABSTRACT

IMPORTANCE: Retrograde transport has been reported to be closely associated with normal cellular biological processes and viral replication. As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has attracted considerable attention. However, whether retrograde transport is associated with PDCoV infection remains unclear. Our present study demonstrates that retromer protein VPS35 acts as a critical host factor that is required for PDCoV infection. Mechanically, VPS35 interacts with PDCoV NS6, mediating the retrograde transport of NS6 from endosomes to the Golgi and preventing it from lysosomal degradation. Recombinant PDCoVs with an NS6 deletion display resistance to VPS35 deficiency. Our work reveals a novel evasion mechanism of PDCoV that involves the manipulation of the retrograde transport pathway by VPS35, providing new insight into the mechanism of PDCoV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Vesicular Transport Proteins , Viral Regulatory and Accessory Proteins , Animals , Coronavirus/genetics , Coronavirus/metabolism , Deltacoronavirus , Swine , Virus Replication , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
5.
Nucleic Acids Res ; 51(19): 10752-10767, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37739415

ABSTRACT

G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.


Subject(s)
Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Viral Nonstructural Proteins/metabolism , DNA Helicases/genetics , Virus Replication/genetics , RNA
7.
Vet Microbiol ; 284: 109834, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536161

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes severe enteritis and lethal watery diarrhea in suckling piglets, leading to tremendous economic losses. Exosomes have been reported to participate in intercellular communication by the transportation of a variety of biological materials, including RNAs, lipids, and proteins. However, PEDV transmission routes have not yet been fully elucidated, and whether exosomes function in PEDV transmission remains unclear. In this study, we extracted and purified exosomes from PEDV-infected Vero cells using a stringent isolation method with a combination of chemical precipitation, ultracentrifugation, and incubation with CD63-labeled magnetic beads. We found that exosomes from PEDV-infected Vero cells contain viral genomic RNA and viral nucleocapsid protein. Furthermore, we demonstrated that the purified exosomes from PEDV-infected cells are capable of transmitting the virus to both PEDV-susceptible and non-susceptible cells. Importantly, exosome-mediated PEDV infection was resistant to neutralization by PEDV-specific neutralizing antibodies that potently neutralized free PEDV. Our study reveals a potential immune evasion mechanism utilized by PEDV and provides new insight into the transmission and infection of this important pathogen.


Subject(s)
Coronavirus Infections , Exosomes , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Exosomes/pathology , Porcine epidemic diarrhea virus/genetics , Antibodies , Immune Evasion , RNA, Viral , Coronavirus Infections/veterinary , Diarrhea/veterinary
8.
Viruses ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37515178

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a re-emerging enteropathogenic coronavirus, has become the predominant causative agent of lethal diarrhea in piglets, resulting in huge economic losses in many countries. Furthermore, the rapid variability of this virus has increased the emergence of novel variants with different pathogenicities. In this study, 633 fecal samples collected from diarrheic piglets in China during 2017-2019 were analyzed, and 50.08% (317/633) of these samples were PEDV-positive. The full-length spike (S) genes of 36 samples were sequenced, and a genetic evolution analysis was performed. The results showed that thirty S genes belonged to the GII-a genotype and six S genes belonged to the GII-b genotype. From the PEDV-positive samples, one strain, designated ECQ1, was successfully isolated, and its full-length genome sequence was determined. Interestingly, ECQ1 is a recombinant PEDV between the GII-a (major parent) and GII-b (minor parent) strains, with recombination occurring in the S2 domain of the S gene. The pathogenicity of ECQ1 was assessed in 5-day-old piglets and compared with that of the strain EHuB2, a representative of GII-a PEDV. Although both PEDV strains induced similar fecal viral shedding in the infected piglets, ECQ1 exhibited lower pathogenicity than did EHuB2, as evidenced by reduced mortality and less severe pathological changes in the intestines. These data suggest that PEDV strain ECQ1 is a potential live virus vaccine candidate against porcine epidemic diarrhea.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Virulence , Coronavirus Infections/epidemiology , Diarrhea/veterinary , China/epidemiology , Phylogeny
9.
J Virol ; 97(5): e0037523, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37133375

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Coronavirus/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Lysine/metabolism , Swine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Replication
10.
Emerg Microbes Infect ; 12(1): 2207688, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37125733

ABSTRACT

ABSTRACTPorcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Humans , Animals , Swine , Deltacoronavirus , Coronavirus/physiology , Antibodies, Neutralizing , Coronavirus Infections/veterinary
11.
Front Immunol ; 14: 1165606, 2023.
Article in English | MEDLINE | ID: mdl-37033982

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteropathogenic coronavirus that causes high mortality in neonatal piglets. The addition of trypsin plays a crucial role in the propagation of PEDV, but also increases the complexity of vaccine production and increases its cost. Previous studies have suggested that the S2' site and Y976/977 of the PEDV spike (S) protein might be the determinants of PEDV trypsin independence. In this study, to achieve a recombinant trypsin-independent PEDV strain, we used trypsin-dependent genotype 2 (G2) PEDV variant AJ1102 to generate three recombinant PEDVs with mutations in S (S2' site R894G and/or Y976H). The three recombinant PEDVs were still trypsin dependent, suggesting that the S2' site R894 and Y976 of AJ1102 S are not key sites for PEDV trypsin dependence. Therefore, we used AJ1102 and the classical trypsin-independent genotype 1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying a chimeric S protein, and successfully obtained trypsin-independent PEDV strain rAJ1102-S2'JS2008, in which the S2 (amino acids 894-1386) domain was replaced with the corresponding JS2008 sequence. Importantly, immunization with rAJ1102-S2'JS2008 induced neutralizing antibodies against both AJ1102 and JS2008. Collectively, these results suggest that rAJ1102-S2'JS2008 is a novel vaccine candidate with significant advantages, including no trypsin requirement for viral propagation to high titers and the potential provision of protection for pigs against G1 and G2 PEDV infections.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Viral Vaccines/genetics , Swine Diseases/prevention & control , Mutation , Antibodies, Neutralizing/genetics
12.
Microbiol Spectr ; : e0501722, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975829

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that causes high mortality in piglets and has catastrophic effects on the global pig industry. PEDV-encoded nonstructural protein 7 (nsp7) is an important component of the viral replication and transcription complex, and a previous study reported that it inhibits poly(I:C)-induced type I interferon (IFN) production, but the mechanism by which this occurs remains unclear. Here, we demonstrated that ectopic expression of PEDV nsp7 antagonized Sendai virus (SeV)-induced interferon beta (IFN-ß) production, as well as the activation of transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB) in both HEK-293T and LLC-PK1 cells. Mechanistically, PEDV nsp7 targets melanoma differentiation-associated gene 5 (MDA5) and interacts with its caspase activation and recruitment domains (CARDs), which sequester the interactions between MDA5 and the protein phosphatase 1 (PP1) catalytic subunits (PP1α and PP1γ), thereby suppressing MDA5 S828 dephosphorylation and keeping MDA5 inactive. Furthermore, PEDV infection attenuated MDA5 multimerization and MDA5-PP1α/-γ interactions. We also tested the nsp7 orthologs of five other mammalian coronaviruses and found that all of them except severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp7 inhibited MDA5 multimerization and SeV- or MDA5-induced IFN-ß production. Collectively, these results suggest that the inhibition of MDA5 dephosphorylation and multimerization may be a common strategy employed by PEDV and some other coronaviruses to antagonize MDA5-mediated IFN production. IMPORTANCE Since late 2010, a reemerging porcine epidemic diarrhea virus variant with high pathogenesis has swept through most pig farms in many countries, resulting in significant economic losses. Coronavirus nonstructural protein 7 (nsp7), conserved within the family Coronaviridae, combines with nsp8 and nsp12 to form the viral replication and transcription complex that is indispensable for viral replication. However, the function of nsp7 in the infection and pathogenesis of coronaviruses remains largely unknown. Our present study demonstrates that PEDV nsp7 specifically competes with PP1 for binding MDA5 and impedes the PP1-mediated dephosphorylation of MDA5 at S828, thereby blocking MDA5-mediated IFN production, revealing the complex mechanism utilized by PEDV nsp7 to efficiently escape host innate immunity.

13.
Autophagy ; 19(8): 2257-2274, 2023 08.
Article in English | MEDLINE | ID: mdl-36779599

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus devastating the global swine industry. DEAD-box helicases (DDXs) are a family of ATP-dependent RNA helicases that are predominantly implicated in modulating cellular RNA metabolism. Meanwhile, a growing number of studies have suggested that some DDXs are associated with innate immunity and virus infection, so they are considered potential antiviral targets. Herein, we screened 40 DDXs and found that ectopic expression of DDX10 exhibited a significant anti-PRRSV effect, while DDX10 knockdown promoted PRRSV proliferation. Further analysis revealed that DDX10 positively regulates type I interferon production, which may contribute to its anti-PRRSV effect. Interestingly, PRRSV infection promoted DDX10 translocation from the nucleus to the cytoplasm for macroautophagic/autophagic degradation to block the antiviral effect of DDX10. By screening PRRSV-encoded proteins, we found that the viral envelope (E) protein interacted with DDX10. In line with the autophagic degradation of DDX10 during PRRSV infection, E protein could induce autophagy and reduce DDX10 expression in wild-type cells, but not in ATG5 or ATG7 knockout (KO) cells. When further screening the cargo receptors for autophagic degradation, we found that SQSTM1/p62 (sequestosome 1) interacted with both DDX10 and E protein, and E protein-mediated DDX10 degradation was almost entirely blocked in SQSTM1 KO cells, demonstrating that E protein degrades DDX10 by promoting SQSTM1-mediated selective autophagy. Our study reveals a novel mechanism by which PRRSV escapes host antiviral innate immunity through selective autophagy, providing a new target for developing anti-PRRSV drugs.Abbreviations: ACTB: actin beta; ATG: autophagy related; co-IP: co-immunoprecipitation; CQ: chloroquine; DDX10: DEAD-box helicase 10; E: envelope; EGFP: enhanced green fluorescent protein; hpi: hours post infection; hpt: hours post transfection; IFA: indirect immunofluorescence assay; IFN-I: type I IFN; IFNB/IFN-ß: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mAb: monoclonal antibody; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; OPTN: optineurin; ORF: open reading frame; PRRSV: porcine reproductive and respiratory syndrome virus; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; WT: wild type.


Subject(s)
Interferon Type I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Antiviral Agents/pharmacology , Sequestosome-1 Protein/metabolism , Signal Transduction/genetics , Autophagy , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Interferon-beta/metabolism , Interferon Type I/metabolism , NF-kappa B/metabolism
14.
Vet Microbiol ; 276: 109616, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495740

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a newly emerging swine enteropathogenic coronavirus with extensive tissue tropism and cross-species transmission potential. Heparan sulfate (HS) is a complex polysaccharide ubiquitously expressed on cell surfaces and the extracellular matrix and acts as an attachment factor for many viruses. However, whether PDCoV uses HS as an attachment receptor is unclear. In this study, we found that treatment with heparin sodium or heparinase Ⅱ significantly inhibited PDCoV binding and infection among LLC-PK1 and IPI-2I cells. Attenuation of HS sulfuration by sodium chlorate also impeded PDCoV binding and infection. Moreover, we demonstrated that HS functioned independently of amino peptidase N (APN), a functional PDCoV receptor, in PDCoV infection. Molecular docking revealed that the S1 subunit of the PDCoV spike protein might be a putative region for HS binding. Taken together, these results firstly confirmed that HS is an attachment receptor for PDCoV infection, providing new insight into better understanding the mechanisms of PDCoV-host interactions.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Molecular Docking Simulation , Coronavirus/physiology , Coronavirus Infections/veterinary , Deltacoronavirus
15.
J Virol ; 96(24): e0162622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453883

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.


Subject(s)
Coronavirus Infections , Host Microbial Interactions , Nucleotide Transport Proteins , Swine Diseases , Animals , Humans , Adsorption , Coronavirus , Coronavirus Infections/physiopathology , CRISPR-Cas Systems , N-Acetylneuraminic Acid/metabolism , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , Swine , Swine Diseases/physiopathology , Trypsin , Host Microbial Interactions/genetics , Protein Domains , Binding Sites
16.
Vet Microbiol ; 274: 109551, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36067658

ABSTRACT

Viroporins are virus-encoded proteins that mediate ion channel (IC) activity, playing critical roles in virus entry, replication, pathogenesis, and immune evasion. Previous studies have shown that some coronavirus accessory proteins have viroporin-like activity. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that encodes three accessory proteins, NS6, NS7, and NS7a. However, whether any of the PDCoV accessory proteins possess viroporin-like activity, and if so which, remains unknown. In this study, we analyzed the biochemical properties of the three PDCoV-encoded accessory proteins and found that NS7a could enhance the membrane permeability of both mammalian cells and Escherichia coli cells. Indirect immunofluorescence assay and co-immunoprecipitation assay results further indicated that NS7a is an integral membrane protein and can form homo-oligomers. A bioinformation analysis revealed that a putative viroporin domain (VPD) is located within amino acids 69-88 (aa69-88) of NS7a. Experiments with truncated mutants and alanine scanning mutagenesis additionally demonstrated that the amino acid residues 69FLR71 of NS7a are essential for its viroporin-like activity. Together, our findings are the first to demonstrate that PDCoV NS7a possesses viroporin-like activity and identify its key amino acid residues associated with viroporin-like activity.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Viroporin Proteins , Coronavirus Infections/veterinary , Amino Acids/metabolism , Alanine/metabolism , Membrane Proteins/metabolism , Ion Channels/metabolism , Mammals
17.
J Virol ; 96(16): e0102722, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35916536

ABSTRACT

Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.


Subject(s)
COVID-19 , Deltacoronavirus/metabolism , Histone Deacetylase 2/metabolism , Swine Diseases , Animals , Humans , Mammals , Peptide Hydrolases , SARS-CoV-2 , Swine , Swine Diseases/metabolism , Swine Diseases/virology
18.
Dev Comp Immunol ; 136: 104515, 2022 11.
Article in English | MEDLINE | ID: mdl-35985565

ABSTRACT

Peroxiredoxin 5 (PRDX5) is the sole member of the atypical 2-Cys subfamily of mammalian PRDXs, a family of thiol-dependent peroxidases. In addition to its antioxidant effect, PRDX5 has been implicated in modulating the inflammatory response. In this study, the full-length cDNA encoding porcine PRDX5 (pPRDX5) was cloned. Subsequently, using porcine alveolar macrophages (PAMs), the target cells of PRRSV infection in vivo, we found that the recombinant pPRDX5 protein inhibited inflammatory responses induced by tumor necrosis factor alpha (TNF-α) or porcine reproductive and respiratory syndrome virus (PRRSV), a virus causing severe interstitial pneumonia in pigs. By contrast, knockdown of endogenous pPRDX5 with specific siRNA enhanced inflammatory responses induced by TNF-α or PRRSV. We also demonstrated that the involvement of pPRDX5 in inflammation regulation depended on its peroxidase activity. Taken together, these results showed that pPRDX5 is an anti-inflammatory molecule, which may play an important immune-regulation role in the pathogenicity of PRRSV.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Anti-Inflammatory Agents/metabolism , Cloning, Molecular , Macrophages, Alveolar/metabolism , Mammals/genetics , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Porcine Reproductive and Respiratory Syndrome/genetics , Swine , Tumor Necrosis Factor-alpha/metabolism
19.
Front Immunol ; 13: 956794, 2022.
Article in English | MEDLINE | ID: mdl-36032158

ABSTRACT

DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-ß production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-ß. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-ß production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-ß production and functions to maintain immune homeostasis.


Subject(s)
Interferon-beta , RNA, Double-Stranded , DEAD-box RNA Helicases , Immunity, Innate , Sendai virus
20.
Vet Microbiol ; 271: 109494, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35752087

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that has the potential for cross-species infection. Many viruses have been reported to induce endoplasmic reticulum stress (ERS) and activate the unfolded protein response (UPR). To date, little is known about whether and, if so, how the UPR is activated by PDCoV infection. Here, we investigated the activation state of UPR pathways and their effects on viral replication during PDCoV infection. We found that PDCoV infection induced ERS and activated all three known UPR pathways (inositol-requiring enzyme 1 [IRE1], activating transcription factor 6 [ATF6], and PKR-like ER kinase [PERK]), as demonstrated by IRE1-mediated XBP1 mRNA cleavage and increased mRNA expression of XBP1s, ATF4, CHOP, GADD34, GRP78, and GRP94, as well as phosphorylated eIF2α expression. Through pharmacologic treatment, RNA interference, and overexpression experiments, we confirmed the negative role of the PERK-eIF2α pathway and the positive regulatory role of the ATF6 pathway, but found no obvious effect of IRE1 pathway, on PDCoV replication. Taken together, our results characterize, for the first time, the state of the ERS response during PDCoV infection and identify the PERK and ATF6 pathways as potential antiviral targets.


Subject(s)
Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Deltacoronavirus , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/metabolism , Swine , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...